Influence of Hardening Relations on Forming Limit Curves Predicted by the Theory of Marciniak, Kuczyński, and Pokora



The derivation is restricted to the tension-tension quadrant of the FLC and neglects inertia effects. Special attention is paid to the initial conditions of the numerical integration of the resulting two evolution equations. By applying different formulations to the quasi-static and later to the strain rate dependent hardening relation of a particular material, the substantial influence of this aspect of the constitutive material model on the calculated FLC is demonstrated. The results underscore the necessity for highly accurate experimental input data to avoid extrapolation of the hardening relation. This is of particular importance over the large strain region; as well as for the entire anticipated strain rate interval.


Equivalent Strain Strain Path Equivalent Plastic Strain Trip Steel Form Limit Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author greatly appreciates the kind and competent assistance of Christian Suciu in improving the phrasing of this article.


  1. 1.
    ASTM Standard E2218-02(2008) Standard Test Method for Determining Forming Limit Curves. ASTM International, West Conshohocken, PAGoogle Scholar
  2. 2.
    Banabic D, Aretz H, Paraianu L, Jurco P (2005) Application of various FLD modelling approaches. Modelling Simul Mater Sci Eng 13:759-769CrossRefGoogle Scholar
  3. 3.
    Banabic D, Soare S (2008) On the effect of the normal pressure upon the forming limit strains. Numisheet 2008, Part A:199-204, Interlaken, SwitzerlandGoogle Scholar
  4. 4.
    El-Magd E (2003) Modeling and simulation of mechanical behavior. In: Totten G E, Xie L, Funatani K (eds) Modeling and simulation for material selection and mechanical design, pp 195-300. Marcel-Dekker, New YorkGoogle Scholar
  5. 5.
    El-Magd E (2006) Beschreibung des Fliessverhaltens und der Versagensgrenzen. Tagung Werkstoffprüfung 2006, Bad Neuenahr, GermanyGoogle Scholar
  6. 6.
    Gese H, Dell H (2006) Numerical prediction of FLC with the program CRACH. Proceedings of the FLC Zurich 2006, IVP, ETH Zurich, SwitzerlandGoogle Scholar
  7. 7.
    Ghosh A K (1978) Plastic flow properties in relation to localized necking in sheets. In: Koistinen D P, Wang N-M (eds) Mechanics of sheet metal forming, pp 287-312, Plenum Press, New YorkGoogle Scholar
  8. 8.
    Goodwin G M (1968) Application of strain analysis to sheet metal forming problems in press shop. SAE paper No 680093:380-387Google Scholar
  9. 9.
    Graf A, Hosford W F (1990) Calculations of forming limit diagrams. Metallurgical Transactions A 21:87-94CrossRefGoogle Scholar
  10. 10.
    Graf A, Hosford W (1994) The influence of strain-path changes on forming limit diagrams of Al 6111 T4. Int J mech Sci 36:897-910CrossRefGoogle Scholar
  11. 11.
    Hiermaier S (2008) Structures under crash and impact. Continuum mechanics, discretization and experimental characterization. Springer, New YorkGoogle Scholar
  12. 12.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc Roy Soc London A 193:281-297MATHCrossRefGoogle Scholar
  13. 13.
    Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness 9:449-463CrossRefGoogle Scholar
  14. 14.
    Hora P, Tong L (2006) Prediction of forming limits in virtual sheet metal forming – yesterday, today and tomorrow. Proceedings of the FLC Zurich 2006, IVP, ETH Zurich, SwitzerlandGoogle Scholar
  15. 15.
    Hora P, Tong L (2008) Theoretical prediction of the influence of curvature and thickness on the FLC by the enhanced Modified Maximum Force Criterion. Numisheet 2008, Part A:205-210, Interlaken, SwitzerlandGoogle Scholar
  16. 16.
    Hotz W, Timm J (2008) Experimental determination of forming limit curves (FLC). Numisheet 2008, Part A:271-278, Interlaken, SwitzerlandGoogle Scholar
  17. 17.
    International Organization for Standardization ISO 12004-1:2008 Metallic materials – Sheet and strip – Determination of forming-limit curves – Part 1: Measurement and application of forming-limit curves in the press shopGoogle Scholar
  18. 18.
    Johnson G R Cook W H (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 21:31-48CrossRefGoogle Scholar
  19. 19.
    Keeler S P, Backofen W A (1963) Plastic instability and fracture in sheets stretched over rigid punchs. Trans ASM 56:25-48Google Scholar
  20. 20.
    Kessler L, Gese H, Metzmacher G, Werner H (2008) An approach to model sheet failure after onset of localized necking in industrial high strength steel stamping and crash simulations. SAE 2008 World Congress, SAE Technical Paper Series 2008-01-0503, Detroit, MichiganCrossRefGoogle Scholar
  21. 21.
    Lévy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. Comptes rendus hebdomadaires des séances de l’Academie des Sciences 70:1323-1325Google Scholar
  22. 22.
    Lorenz E N (1960) Maximum simplification of the dynamic equations. Tellus 12:243-254CrossRefGoogle Scholar
  23. 23.
    Marciniak Z, Kuczyński K (1967): Limit strains in the processes of stretch-forming sheet metal. Int J mech Sci 9:609-620CrossRefGoogle Scholar
  24. 24.
    Marciniak Z, Kuczyński K, Pokora T (1973): Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int J mech Sci 15:789-805CrossRefGoogle Scholar
  25. 25.
    Mises R von (1913) Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr Königl Ges Wiss Göttingen, Math-phys Kl 582-592Google Scholar
  26. 26.
    Press W H, Teukolsky S A, Vetterling W T, Flannery B P (1992) Numerical Recipes in FORTRAN. The art of Scientific Computing. Cambridge University Press, CambridgeMATHGoogle Scholar
  27. 27.
    SIMULIA (2008) Abaqus Analysis User’s Manual. 166 Valley Street, Providence, RI 02909, USAGoogle Scholar
  28. 28.
    Steinbeck G, Bleck W, El-Magd E, Bork C-P, Sonsino C, Masendorf R, Evertz T, Menne M (eds) (2007) Ermittlung des Werkstoffverhaltens und des Beschichtungseinflusses durch rechnerische Methoden zur Verkürzung der Entwicklungszeiten im Fahrzeugbau mit Stahl. Forschungsvereinigung Stahlanwendung e.V., Projekt 603, Düsseldorf, GermanyGoogle Scholar
  29. 29.
    Symonds P S (1967) Survey of methods of analysis for plastic deformation of structures under dynamic loading. Brown Univ, Div of Eng Report BU/NSRDC/1-67Google Scholar
  30. 30.
    Volk W, Illig R, Kupfer H, Wahlen A, Hora P, Kessler L, Hotz, W (2008) Benchmark 1 – Virtual forming limit curves. Part A: Physical tryout report. Numisheet 2008, Part B:3-9, Interlaken, SwitzerlandGoogle Scholar
  31. 31.
    Volk W, Wahlen A, Hora P, Kessler L, Hotz, W (2008) Benchmark 1 – Virtual forming limit curves. Part B: Benchmark analysis. Numisheet 2008, Part B:11-19, Part C:21-42, Interlaken, SwitzerlandGoogle Scholar
  32. 32.
    Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J mech Sci 47:719-743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.BMW Group80788 MunichGermany

Personalised recommendations