Review of Development of the Smooth Particle Hydrodynamics (SPH) Method

  • Rade Vignjevic
  • James Campbell


The paper gives an overview of developments of the SPH method. Especial attention is given to the main shortcomings of the original form of the method namely consistency, tensile instability and zero energy modes. A derivation of an example of a correction necessary to assure first order consistency is given. The origin of the tensile instability and a few proposed solutions to this problem are described. Similar consideration is given with respect to the zero energy modes typical for the collocational SPH method.


Smooth Particle Hydrodynamic Particle Method Meshless Method Essential Boundary Condition Meshless Local Petrov Galerkin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atluri S., Zhu T. (2000) A new meshless local Petrov Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, Vol 22, pp 117–127MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atluri S., H. G. Kim, J. Y. Cho, (2000), A critical assessment of the truly meshless local Petrov Galerkin (MLPG) and local boundary integral equation (LBIE), Computational Mechanics, Vol 24, pp 348–372CrossRefGoogle Scholar
  3. 3.
    Attaway S. W., Heinstein M.W., and Swegle J.W. (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 150:199–205.CrossRefGoogle Scholar
  4. 4.
    Balsara D.S., Von Neumann stability analysis of smoothed particle hydrodynamics – Suggestions for optimal algorithms, J. Comput. Phys., 121 (1995), 357–372.MATHCrossRefGoogle Scholar
  5. 5.
    Beissel, S. and Belytschko T. (1996). Nodal integration of the element-free Galerkin method. Computational Methods Applied Mechanical Engineering, Vol. 139 , pp. 49–71.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. (1996) Meshless Methods: An overview and recent developments Computer methods in applied mechanics and engineering, 139:3–47.MATHGoogle Scholar
  7. 7.
    Belytschko T., Y.Y. Lu, and L. Gu. (1994) Element-free Galerkin methods. International Journal for Numerical methods in Engineering, 37:229–256, 1994.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Belytschko T., Xiao S. (2002), ‘Stability Analysis of ParticleMethods with Corrected Derivatives’,
  9. 9.
    Belytschko T, Xiao SP. (2004), A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering; 193: pp. 1645–1669.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Benz, W. (1990). Smooth particle hydrodynamics: a review. In J.R. Buchler, editor, The NumericalModelling of Nonlinear Stellar Pulsatations, pp. 269–288. Kluwer Academic Publishers. Cited in: Camplbell J. (1998). Lagrangian hydrocode modelling of hypervelocity impact on spacecraft. PhD thesis, Cranfield University 20 Review of Development of the Smooth Particle Hydrodynamics (SPH) Method 393Google Scholar
  11. 11.
    Bonet J. and Kulasegaram S. (1999). Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulation. International Journal of Numerical Methods Engineering, Vol. 47, pp. 1189–1214.CrossRefGoogle Scholar
  12. 12.
    Campbell J., Vignjevic R., Libersky L., (2000), A Contact Algorithm for Smoothed Particle Hydrodynamics, Computer Methods in Applied Mechanics and Engineering, Vol. 184/1, pp 49–65, March 2000.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Campbell P. M., (1989), Some new algorithms for boundary value problems in smooth particle hydrodynamics. Technical Report DNA-TR–88–286, Mission Research Corporation.Google Scholar
  14. 14.
    Cha S. H. and Whitworth A.P., (2003), Implementations and tests of Godunov-type particle hydrodynamics, Mon. Not. R. Astron. Soc., 340 pp. 73–90CrossRefGoogle Scholar
  15. 15.
    De Vuyst T., Vignjevic R. and Campbell J. (2005), Modelling of Fluid-Structure Impact Problems using a Coupled SPH-FE solver, Journal of Impact Engineering, Volume 31, Issue 8, pp. 1054–1064Google Scholar
  16. 16.
    Dilts G. A., (1997), Moving –least squares-particle hydrodynamics I, consistency and stability. International Journal for Numerical Methods in Engineering, 44, pp. 1115–55MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dyka C. T., Ingel R.P., (1995), An approach for tension instability in smoothed particle hydrodynamics (SPH). Computers and Structures, 57(4), pp. 573–580MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gingold, R.A. and Monaghan, J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Royal Astronomical Society, Vol. 181, pp. 375–389.MATHGoogle Scholar
  19. 19.
    Guenther C., Hicks D.L., Swegle J.W. (1994). Conservative smoothing versus artificial viscosity. Technical Report SAND94–1853.Google Scholar
  20. 20.
    Harten A., P. D. Lax P. D.. and van Leer B., (1983). On upstream differencing and Godunovtype schemes for hyperbolic conservation laws, SIAM Review, V 25, no 1, pp 35–61.MATHCrossRefGoogle Scholar
  21. 21.
    Hiermaier S., Peter J., Sauer M., Thoma K. (2001): Coupled FE-Particle Codes Applied to Material Characterization and Crash Simulation. European Conference on Computational Mechanics (ECCM), Krakau, Polen, 26.–29.06..Google Scholar
  22. 22.
    Hiermaier S. and Sauer M., (2003), Adaptive FE-Meshfree Modelling for impacts of liquid filled vessels on thin walled structures, Proceedings of IMECE’03, ASME International Mechanical Engineering Congress and Exposition, Washington DC, paper IMECE2003–44189Google Scholar
  23. 23.
    Huerta A, Fernandez-Mendez S., (2000), Enrichment and coupling of the finite element and meshless method, International Journal for Numerical Methods in Engineering; 48: pp. 1615–1636.MATHCrossRefGoogle Scholar
  24. 24.
    Huerta A, Fernandez-Mendez S, Liu WK., (2004), A comparison of two formulations to blend finite elements and meshfree methods. Computer Methods in Applied Mechanics and Engineering; 193 (12–14): pp. 1105–1117MATHCrossRefGoogle Scholar
  25. 25.
    Hughes T. J. R. (1987). The finite element method, Prentice Hall.Google Scholar
  26. 26.
    Inutsuka S.–I., Reformulation of smoothed particle hydrodynamics with Riemann solver, J. Comput. Phys., 179 (2002), pp. 238–267MATHCrossRefGoogle Scholar
  27. 27.
    Johnson, G.R., Petersen, E.H. and Stryk, R.A. (1993). Incorporation of an SPH option in the EPIC code for a wide range of high velocity impact computations. International Journal of Impact Engineering, Vol. 14, pp. 385–394.CrossRefGoogle Scholar
  28. 28.
    Johnson, G.R. (1994). Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations Nuclear Engineering and Design, Vol. 150, pp. 265–274.CrossRefGoogle Scholar
  29. 29.
    Johnson G. R. and S.R. Beissel. (1996a). Normalised smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering, 39:2725–2741.Google Scholar
  30. 30.
    Johnson, G.R., Stryk, R.A. and Beissel, S.R. (1996b). SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 347–373.Google Scholar
  31. 31.
    Kadowaki H, Liu WK., (2005), A multiscale approach for the micropolar continuum model. Computer Modeling in Engineering and Sciences; 7(3): pp. 269–282.MATHMathSciNetGoogle Scholar
  32. 32.
    Krongauz Y., Belytschko T. (1997). Enforcement of essential boundary conditions in measles approximations using finite elements. Submited to International Journal for Numerical Methods in Engineering. 394 Rade Vignjevic and James CampbellGoogle Scholar
  33. 33.
    Krongauz Y., Belytschko T. (1997). Consitent pseudo derivatives in meshless methods Computer methods in applied mechanics and engineering, 146:371–386.MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Landau L. D. Lifshitz E.M. (1960).Mechanics, Course of Theoretical Physics, V 1, Pergamon PressGoogle Scholar
  35. 35.
    Lattanzo J. C., J.J. Monaghan, H. Pongracic, P. Schwarz. (1996). Controlling penetration. SIAM, Journal for Scientific and Statistic Computation, V 7, No 2, pp 591–598.CrossRefGoogle Scholar
  36. 36.
    Libersky, L.D. and Petschek, A.G., (1990), Smooth particle hydrodynamics with strength of materials. Advances in the Free Lagrange Method, Lecture Notes in Physics, Vol. 395, pp. 248–257.Google Scholar
  37. 37.
    Libersky L.D., Petschek A.G., Carney T.C., Hipp J.R. and Allahdadi F.A., (1993), High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response, Journal of Computational Physics, Vol. 109, Issue 1, November, pp. 67–75.MATHCrossRefGoogle Scholar
  38. 38.
    Li S, Liu WK., (2004), Meshfree Particle Methods. Springer: BerlinMATHGoogle Scholar
  39. 39.
    Liu M. B., Liu G. R. and Lam K. Y., (2003), Constructing smoothing functions in smoothed particle hydrodynamics with applications, J. Comp. Appl. Math, 155, 263–284MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Liu W. K., Jun S. and Zhang Y. F., (1995), Reproducing kernel particle methods, Int. J. Num. Meth. Engrng., 20, pp. 1081–1106MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Liu W. L., Jun Li S, Adee J. and Belytschko T., (1995), Reproducing kernel particle methods for structural dynamics, International Journal for Numerical Methods in Engineering, 38: pp. 1655–1679MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Lucy, L.B., (1977), A numerical approach to the testing of fusion process. Astronomical journal, Vol. 88, pp. 1013–1024CrossRefGoogle Scholar
  43. 43.
    Meglicki Z., Analysis and Application of Smoothed Particle Magneto-Hydrodynamics, PhD thesis, Australian National UniversityGoogle Scholar
  44. 44.
    Mitchell A. R. and Griffiths D. F., (1980), The finite difference method in partial differential equations, John WileyGoogle Scholar
  45. 45.
    Monaghan J.J., (1982), Why particle methods work, SIAM Journal on Scientific and Statistical Computing, 3(4): pp. 422–433MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Monaghan J.J. and Gingold R.A., (1983), Shock simulation by the particle method SPH, Journal of Computational Physics, Vol. 52, pp. 374–389MATHCrossRefGoogle Scholar
  47. 47.
    Monaghan J.J. and Lattanzio J.C., (1985), A refined particle method for astrophysical problems. Astronomy and Astrophysics, Vol. 149, Issue 1, pp. 135–143MATHGoogle Scholar
  48. 48.
    Monaghan J.J., Pongracic H., (1985), Artificial viscosity for particle methods. Applied Numerical Mathematics, 1: pp. 187–194MATHCrossRefGoogle Scholar
  49. 49.
    Monaghan J.J., (1989), On the problem of penetration in particle methods. Journal of Computational Physics, 82:, pp. 1–15MATHCrossRefGoogle Scholar
  50. 50.
    Monaghan J.J., (1992), Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30: pp. 543–574CrossRefGoogle Scholar
  51. 51.
    Monaghan, J.J., (2000), SPH without a Tensile Instability. Journal of Computational Physics, Vol. 159, pp. 290–311MATHCrossRefGoogle Scholar
  52. 52.
    Monaghan J., (2002), SPH compressible turbulence Mon. Not. R. Astron. Soc. 335, pp. 843– 52CrossRefGoogle Scholar
  53. 53.
    Moussa B., (2000), Meshless Particle methods: Recent developments for non-linear conservation laws in bounded domain, in Godunov Methods: Theory and Applications, E. F. Toro (Editor), Kluwer Academic/Plenum PublishersGoogle Scholar
  54. 54.
    Moussa B., J. P. Vila, (2000), Convergence of the SPH method for scalar nonlinear conservation laws, SIAM Journal of Numerical Analysis, Vol 37 number 3, pp 863–887.MATHCrossRefGoogle Scholar
  55. 55.
    Parshikov A. N., Medin S. A., Loukashenko I. I. and Milekhin V. A., (2000), Improvements in SPH method by means of inter-particle contact algorithm and analysis of perforation tests at moderate projectile velocities, Int. J. Impact Engng., 24 pp 779–796CrossRefGoogle Scholar
  56. 56.
    Petschek A. G. and Libersky, L. D., (1993), Cylindrical smoothed particle hydrodynamics. Journal of Computational Physics, Vol. 109, pp. 76–83.MATHCrossRefGoogle Scholar
  57. 57.
    Price J. and Monaghan J., (2004), Smoothed particle magneto-hydrodynamics: II. Variational principles and variable smoothing length terms, Mon. Not. R. Astron. Soc. 348, pp. 139–52CrossRefGoogle Scholar
  58. 58.
    Rabczuk T, Belytschko T, Xiao SP., (2004), Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering; 193: pp. 1035–1063MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Randles P. W. and Libersky L. D., (1996), Smoothed particle hydrodynamics: Some recent improvements and applications, Computer methods in applied mechanics and engineering, 139, pp. 375–408.MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Randles, P.W., Libersky, L.D. and Petschek, A.G., (1999), On neighbors, derivatives, and viscosity in particle codes, in: Proceedings of ECCM Conference, Munich, GermanyGoogle Scholar
  61. 61.
    Randles, P.W., Libersky, L.D., (2000), Normalised SPH with stress points, Int. Journal Numerical Methods in Engineering, Vol. 48, pp. 1445–1462MATHCrossRefGoogle Scholar
  62. 62.
    Resnyansky, A. D., (2002), DYNA-modelling of the high-velocity impact problems with a split-element algorithm, International Journal of Impact Engineering, Vol. 27, Issue 7, pp. 709–727.CrossRefGoogle Scholar
  63. 63.
    Reveles J., (2006), Development of a Total Lagrangian SPH Code for the Simulation of Solids Under Dynamic Loading, PhD Thesis, Cranfield UniversityGoogle Scholar
  64. 64.
    Sauer M., (2000), Adaptive Koppling des netzfreien SPH-Verfahrens mit finiten Elementen zur Berechnung von Impaktvorgaengen. Dissertation, Universitaet der Bundeswehr Muenchen, Institut fuer Mechanik und StatikGoogle Scholar
  65. 65.
    Sauer M., Hiermaier S., Scheffer U. (2001): Modeling Penetration Events using FE/MLSPH Adaptive Coupling. Intern. Symp. on the Interaction of the Effects of Munitions with Structures (10th ISIEMS), San Diego, California, USA, 07.–11.06.Google Scholar
  66. 66.
    Sauer, M., Hiermaier, S., Thoma, K., (2002): Modelling the Continuum/Discrete Transition Using Adaptive Meshfree Methods, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria.Google Scholar
  67. 67.
    Stryk R. A., Johnson G.R. and Beissel S.R., (1996), SPH for high velocity impact computations. Computer methods in applied mechanics and engineering, 139, pp. 347–373MATHCrossRefGoogle Scholar
  68. 68.
    Swegle, J.W., Attaway, S.W., Heinstein, M.W., Mello, F.J. and Hicks, D.L., (1994), An analysis of smooth particle hydrodynamics, Sandia Report SAND93–2513.Google Scholar
  69. 69.
    Swegle J, (2000) Conservation of momentum and tensile instability in particle methods, Sandia Report 2000–1223Google Scholar
  70. 70.
    Takeda H. T., S. M. Miyama, M. Sekiya. (1994). Numerical simulation of viscous flow by smooth particle hydrodynamics, Progress of Theoretical Physics, 92 pp 939–960.CrossRefGoogle Scholar
  71. 71.
    Van der Vegt LJ. J. W., Van der Ven H. and Boelens O. J., (1995), Discontinuous Galerkin methods for partial differential equations, in Godunov Methods: Theory and Applications.Google Scholar
  72. 72.
    Van Leer B., (1979), Towards the ultimate conservative difference scheme, J. Comput. Phys., 32 pp. 101–136CrossRefGoogle Scholar
  73. 73.
    Van Leer B., (2006), Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes, Commun. Comput. Phys., 1, pp. 192–206Google Scholar
  74. 74.
    Vila J. P., On particle weighted methods and smooth particle hydrodynamics, Math. Models Methods Appl. Sci., 9 (1999) 2, pp. 161–209MATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    Vignjevic R., De Vuyst T., Campbell J., (2000), Modelling of Spall in an Anisotropic Aluminium Alloy, Journal of Space Debris, Volume 2, Number 4, pp. 225–232CrossRefGoogle Scholar
  76. 76.
    Vignjevic R., Campbell J., Libersky L., (2000), A Treatment of Zero Energy Modes in the Smoothed Particle Hydrodynamics Method, Computer Methods in Applied Mechanics and Engineering, Vol. 184/1, pp. 67–85MathSciNetCrossRefGoogle Scholar
  77. 77.
    Vignjevic R., De Vuyst T., Campbell J., (2002a), The use of a homogeneous repulsive force for contact treatment in SPH, Fifth World Congress on Computational Mechanics, Vienna, Austria, July 7–12Google Scholar
  78. 78.
    Vignjevic R., Hughes K. and Taylor E.A., (2002b), Finite element modelling of failure of a multi-material target due to high velocity space debris impacts. Space Debris, Vol. 2, pp. 41–50.Google Scholar
  79. 79.
    Vignjevic R., De Vuyst T., Gourma M., (2001), Interpolation Techniques in Meshless Methods, Computer Modelling in Engineering and Science Journal, V 2, No. 3, pp 319–337MATHGoogle Scholar
  80. 80.
    Vignjevic R.; Reveles J., Campbell J., (2006a), SPH in a Total Lagrangian Formalism, Computer Methods in Applied Mechanics and Engineering, Vol. 14, No. 3, pp. 181–198, 396 Rade Vignjevic and James CampbellGoogle Scholar
  81. 81.
    Vignjevic R.; De Vuyst T.; and Campbell J., (2006b), A Frictionless Contact Algorithm for Meshless Methods , A Frictionless Contact Algorithm for Meshless Methods, Computer Methods in Applied Mechanics and Engineering, Vol. 13, No. 1, pp. 35–48,Google Scholar
  82. 82.
    Wagner GJ, Liu WK. (2001), Hierarchical enrichment for bridging scales and meshfree boundary conditions. International Journal for Numerical Methods in Engineering; 50: pp. 507–524.MATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Wen Y., Hicks D.L. and Swegle, J.W. (1994), Stabilising SPH with conservative smoothing. Technical Report SAND94–1932Google Scholar
  84. 84.
    Xiao SP, Belytschko T. (2005) Material stability analysis of particle methods. Advances in Computational Mathematics; 23: pp. 171–190MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cranfield University, School of Engineering – AppliedMechanicsCranfieldUK

Personalised recommendations