Advertisement

Simulation of Recoverable Foams under Impact Loading

  • Stefan Kolling
  • Andre Werner
  • Tobias Erhart
  • Paul A. Du Boisg
Chapter

Abstract

Simulation of recoverable foams is usually based on hyperelasticity. Since foams are always strain-rate dependent, the viscosity of the material has to be considered additionally in the material model. One disadvantage of a viscous description is the time-consuming parameter identification associated with the determination of the damping constants. An alternative is given by tabulated formulations where stress-strain relations based on uniaxial static and dynamic tensile tests at different strain rates are used directly as input. This approach is implemented in the material law no. 83 (Fu-Chang-Foam) in LS-DYNA, see ref-1 and ref-2. We briefly show the theoretical background and the algorithmic setup of the tabulated Fu-Chang model and demonstrate the applicability of the model to non-uniaxial loading. Major problems occur in the simulation of unloading processes. These difficulties are due to the identification of unloading by the product of strain and strain rate as implemented in material law no. 83 so far. If the strain rate oscillates strongly, a unique identification of loading and unloading is no longer possible. Therefore, an extension of the model with elastic damage is presented that is capable of identifying unloading in a natural way, i.e. by a decrease of the stored hyperelastic energy of the system. With our model, hysteresis effects can be simulated and energy is dissipated. The model is formulated in a user-friendly way by a tabulated description of damage.

Keywords

Impact Loading Load Path Damage Formulation Foam Material Elastic Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LS-DYNA User Manual and Theoretical Manual, Livermore Software Technology Corporation.Google Scholar
  2. 2.
    Du Bois, P.A. (2004): Crashworthiness Engineering Course Notes, Livermore Software Technology Corporation.Google Scholar
  3. 3.
    Kolling, S.; Werner, A.; Erhart, T.; Du Bois, P.A. (2007): An elastic damage model for the simulation of recoverable polymeric foams, Proceedings of the 6th LS-DYNA Forum, Frankenthal, Germany, B-II: 31–42.Google Scholar
  4. 4.
    Mills, N.J.; Gilchrist, A. (2000): The high strain extension of open cell foams. Journal of Engineering Materials and Technology – Transactions of the ASME 122: 67–73.CrossRefGoogle Scholar
  5. 5.
    Ehlers, W. (2002): Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer-Verlag, Berlin.Google Scholar
  6. 6.
    Markert, B. (2005): Porous Media Viscoelasticity with Application to Polymeric Foams, Dissertation, Report No. II-12 of the Institute of Applied Mechanics (CE), Universität Stuttgart, Germany.Google Scholar
  7. 7.
    Du Bois, P.A.; Kolling, S.; Koesters, M.; Frank, T. (2006): Material behaviour of polymers under impact loading. International Journal of Impact Engineering 32: 725–740.CrossRefGoogle Scholar
  8. 8.
    M. Schrodt, G. Benderoth, A. Kuehhorn, G. Silber (2005): Hyperelastic description of polymer soft foams at finite deformations. Technische Mechanik 25 (3-4): 162–173.Google Scholar
  9. 9.
    Feng, W.W. (2003): On constitutive equations for elastomers and foams. 4th European LS-DYNA Users Conference, pp. D-II-15/28.Google Scholar
  10. 10.
    Chang, Fu S.; Song, Y; Lu, D.X.; DeSilva, C.N. (1998): Unified constitutive equations for foam materials. Journal of Engineering Materials and Technology – Transactions of the ASME 120 (3): 212–217.CrossRefGoogle Scholar
  11. 11.
    Miehe, C. (1995): Discontinuous and Continuous Damage Evolution in Ogden-Type Large Strain Elastic Materials, European Journal of Mechanics, A/Solids 14: 697–720.MATHGoogle Scholar
  12. 12.
    Kolling, S.; Benson, D.J.; Du Bois, P.A. (2005): A simplified rubber model with damage. 4th LS-DYNA Forum, Bamberg, 2005, Conference Proceedings, pp. B-II-01/10.Google Scholar
  13. 13.
    Kolling, S.; Du Bois, P.A.; Benson, D.J.; Feng, W.W. (2007): A tabulated formulation of hyperelasticity with rate effects and damage. Computational Mechanics 40 (5): 885–899.MATHCrossRefGoogle Scholar
  14. 14.
    Hill, R. (1978): Aspects of invariance in solid mechanics, Adv. Appl. Mech. 18: 1–75.MATHCrossRefGoogle Scholar
  15. 15.
    A. Werner (2006): Zur Simulation reversibler EPP-Schäume unter mehrachsiger und stoβartiger Beanspruchung. Diplomarbeit BTU Cottbus.Google Scholar
  16. 16.
    Mills, N.J.; Zhu, H. (1999): The high strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids, 47:669–695.MATHCrossRefGoogle Scholar
  17. 17.
    Fremgen, C.M.; Huber, U.; Maier, M. (2005): Experimental investigation of polypropylen foams as base for numerical simulation. Cellular Metals and Polymers, Eds.: R. F. Singer et al., Trans Tech Publications, Zürich, Schweiz.Google Scholar
  18. 18.
    Mills, N.J.; Gilchrist, A. (1999): Shear and Compressive Impact of Polypropylene Bead Foam. Cellular Polymers, 18(3): 157–174.Google Scholar
  19. 19.
    Huber, U.; Maier, M. (2005): Experimentelle Untersuchung von Polypropylen-Schaum als Basis für die numerische Simulation. Workshop ‘Simulation von Schaumstoffen mit stark nichtlinearem Verhalten’, Hohenwart, Germany.Google Scholar
  20. 20.
    Münch, M.; Rohde, S.; Schlimmer, M. (2005): Mehrachsige Beanspruchung von thermoplastischen Konstruktionsschaumstoffen. Workshop ‘Simulation von Schaumstoffen mit stark nichtlinearem Verhalten’, Hohenwart, Germany.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stefan Kolling
    • 1
  • Andre Werner
    • 2
  • Tobias Erhart
    • 3
  • Paul A. Du Boisg
    • 4
  1. 1.Giessen University of Applied Sciences, Laboratory of MechanicsWiesenstr. 14Germany
  2. 2.Department of Structural EngineeringNortheastern UniversityBostonUSA
  3. 3.Dynamore GmbHIndustriestr. 2Germany
  4. 4.Consulting EngineerFreiligrathstr. 6Germany

Personalised recommendations