Myc and Control of Tumor Neovascularization

  • Prema Sundaram
  • Chi V. Dang
  • Andrei Thomas-Tikhonenko
Part of the Cancer Genetics book series (CANGENETICS)


The hallmark of Burkitt’s and some other non-Hodgkin lymphomas and leukemias is the (8;14) translocation that subjects the c-myc proto-oncogene to the control of a heavy chain gene enhancer (Dalla-Favera et al. 1982; Taub et al. 1982). Additionally, double minute chromosomes (dmin) containing amplified copies of the c-Myc gene are commonly detected in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) (Storlazzi et al. 2004). In parallel, rearrangements and amplifications of the c-MYC locus are hallmarks of many solid neoplasms. For example, the LINE-1 element insertion leads to MYC rearrangement in the case of breast carcinoma (Morse et al. 1988) and up to 50% of breast carcinomas show a gain in copy number of the 8q24 band containing MYC (Ioannidis et al. 2003). Another Myc family member, MYCN, is amplified in neuroblastoma cell lines (Kohl et al. 1983) and primary tumors, where it correlates with advance disease stage (Brodeur et al. 1984). Yet, despite the wealth of data implicating Myc in the pathogenesis of cancer, its exact contribution to neoplastic traits is not completely understood. Much recent evidence points towards the involvement of Myc in cell-extrinsic processes, such as angiogenesis.


Acute Myeloid Leukemia Connective Tissue Growth Factor VEGF Expression Tumor Neovascularization VEGF mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the members of their laboratories, in particular Dr Michael Dews, and also Dr. Celeste Simon (Penn), for many stimulating discussions concerning the nature of Myc-driven angiogenesis.


  1. Adams, J. C. and R. P. Tucker (2000). “The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development.” Dev Dyn 218(2): 280–99.PubMedCrossRefGoogle Scholar
  2. Adams, R. H. and K. Alitalo (2007). “Molecular regulation of angiogenesis and lymphangiogenesis.” Nat Rev Mol Cell Biol 8(6): 464–78.PubMedCrossRefGoogle Scholar
  3. Alitalo, K. and P. Carmeliet (2002). “Molecular mechanisms of lymphangiogenesis in health and disease.” Cancer Cell 1(3): 219–27.PubMedCrossRefGoogle Scholar
  4. Arbiser, J. L., M. A. Moses, C. A. Fernandez, N. Ghiso, Y. Cao, N. Klauber, D. Frank, M. Brownlee, E. Flynn, S. Parangi, H. R. Byers and J. Folkman (1997). “Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways.” Proc Natl Acad Sci U S A 94(3): 861–6.PubMedCrossRefGoogle Scholar
  5. Babic, A. M., C. C. Chen and L. F. Lau (1999). “Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo.” Mol Cell Biol 19(4): 2958–66.PubMedGoogle Scholar
  6. Baudino, T. A., C. McKay, H. Pendeville-Samain, J. A. Nilsson, K. H. Maclean, E. L. White, A. C. Davis, J. N. Ihle and J. L. Cleveland (2002). “c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression.” Genes Dev 16(19): 2530–43.PubMedCrossRefGoogle Scholar
  7. Bergers, G., K. Javaherian, K. M. Lo, J. Folkman and D. Hanahan (1999). “Effects of angiogenesis inhibitors on multistage carcinogenesis in mice.” Science 284(5415): 808–12.PubMedCrossRefGoogle Scholar
  8. Bergers, G., R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb and D. Hanahan (2000). “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.” Nat Cell Biol 2(10): 737–44.PubMedCrossRefGoogle Scholar
  9. Bogdanov, A., Jr., E. Marecos, H. C. Cheng, L. Chandrasekaran, H. C. Krutzsch, D. D. Roberts and R. Weissleder (1999). “Treatment of experimental brain tumors with trombospondin-1 derived peptides: an in vivo imaging study.” Neoplasia 1(5): 438–45.PubMedCrossRefGoogle Scholar
  10. Bouck, N., V. Stellmach and S. C. Hsu (1996). “How tumors become angiogenic.” Adv Cancer Res 69: 135–74.PubMedCrossRefGoogle Scholar
  11. Brandvold, K. A., P. Neiman and A. Ruddell (2000). “Angiogenesis is an early event in the generation of myc-induced lymphomas.” Oncogene 19(23): 2780–5.PubMedCrossRefGoogle Scholar
  12. Breit, S., K. Ashman, J. Wilting, J. Rossler, E. Hatzi, T. Fotsis and L. Schweigerer (2000). “The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A.” Cancer Res 60(16): 4596–601.PubMedGoogle Scholar
  13. Brigstock, D. R. (2002). “Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61).” Angiogenesis 5(3): 153–65.PubMedCrossRefGoogle Scholar
  14. Brodeur, G. M., R. C. Seeger, M. Schwab, H. E. Varmus and J. M. Bishop (1984). “Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage.” Science 224(4653): 1121–4.PubMedCrossRefGoogle Scholar
  15. Chang, T. C. and J. T. Mendell (2007). “microRNAs in vertebrate physiology and human disease.” Annu Rev Genomics Hum Genet 8: 215–39.PubMedCrossRefGoogle Scholar
  16. Chayka O., Corvetta, D., Dews, M., Caccamo, A. E., Piotrowska, I., Santilli, G., Gibson, S., Sebire, N. J., Himoudi, N., Hogarty, M. D., Anderson, J., Bettuzzi, S., Thomas-Tikhonenko, A., and Sala, A. (2009) “Clusterin, a haploinsufficient tumour suppressor gene in neuroblastomas.” J Natl Cancer Inst 101(g): 663–77.Google Scholar
  17. Chlenski, A., S. Liu, S. E. Crawford, O. V. Volpert, G. H. DeVries, A. Evangelista, Q. Yang, H. R. Salwen, R. Farrer, J. Bray and S. L. Cohn (2002). “SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis.” Cancer Res 62(24):7357–63.PubMedGoogle Scholar
  18. Coller, H. A., C. Grandori, P. Tamayo, T. Colbert, E. S. Lander, R. N. Eisenman and T. R. Golub (2000). “Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion.” Proc Natl Acad Sci U S A 97(7): 3260–5.PubMedCrossRefGoogle Scholar
  19. Coussens, L. M., W. W. Raymond, G. Bergers, M. Laig-Webster, O. Behrendtsen, Z. Werb, G. H. Caughey and D. Hanahan (1999). “Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis.” Genes Dev 13(11): 1382–97.PubMedCrossRefGoogle Scholar
  20. Dalla-Favera, R., M. Bregni, J. Erikson, D. Patterson, R. C. Gallo and C. M. Croce (1982). “Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells.” Proc Natl Acad Sci U S A 79(24): 7824–7.PubMedCrossRefGoogle Scholar
  21. Dameron, K. M., O. V. Volpert, M. A. Tainsky and N. Bouck (1994). “Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1.” Science 265(5178): 1582–4.PubMedCrossRefGoogle Scholar
  22. Dang, C. V. (1999). “c-Myc target genes involved in cell growth, apoptosis, and metabolism.” Mol Cell Biol 19(1): 1–11.PubMedGoogle Scholar
  23. Dang, C. V., K. A. O'Donnell, K. I. Zeller, T. Nguyen, R. C. Osthus and F. Li (2006). “The c-Myc target gene network.” Semin Cancer Biol 16(4): 253–64.PubMedCrossRefGoogle Scholar
  24. Dang, C. V., J. W. Kim, P. Gao and J. Yustein (2008). “The interplay between MYC and HIF in cancer.” Nat Rev Cancer 8(1): 51–6.PubMedCrossRefGoogle Scholar
  25. Dews, M., A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E. E. Furth, W. M. Lee, G. H. Enders, J. T. Mendell and A. Thomas-Tikhonenko (2006). “Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster.” Nat Genet 38(9): 1060–5.PubMedCrossRefGoogle Scholar
  26. Dominguez-Sola, D., C. Y. Ying, C. Grandori, L. Ruggiero, B. Chen, M. Li, D. A. Galloway, W. Gu, J. Gautier and R. Dalla-Favera (2007). “Non-transcriptional control of DNA replication by c-Myc.” Nature 448(7152): 445–51.PubMedCrossRefGoogle Scholar
  27. Eischen, C. M., J. D. Weber, M. F. Roussel, C. J. Sherr and J. L. Cleveland (1999). “Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis.” Genes Dev 13(20): 2658–69.PubMedCrossRefGoogle Scholar
  28. Felsher, D. W. and J. M. Bishop (1999). “Transient excess of MYC activity can elicit genomic instability and tumorigenesis.” Proc Natl Acad Sci U S A 96(7): 3940–4.PubMedCrossRefGoogle Scholar
  29. Folkman, J. and D. Hanahan (1991). “Switch to the angiogenic phenotype during tumorigenesis.” Princess Takamatsu Symp 22: 339–47.PubMedGoogle Scholar
  30. Folkman, J., K. Watson, D. Ingber and D. Hanahan (1989). “Induction of angiogenesis during the transition from hyperplasia to neoplasia.” Nature 339(6219): 58–61.PubMedCrossRefGoogle Scholar
  31. Fontana, L., M. E. Fiori, S. Albini, L. Cifaldi, S. Giovinazzi, M. Forloni, R. Boldrini, A. Donfrancesco, V. Federici, P. Giacomini, C. Peschle and D. Fruci (2008). “Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM.” PLoS ONE 3(5): e2236.PubMedCrossRefGoogle Scholar
  32. Forsythe, J. A., B. H. Jiang, N. V. Iyer, F. Agani, S. W. Leung, R. D. Koos and G. L. Semenza (1996). “Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.” Mol Cell Biol 16(9): 4604–13.PubMedGoogle Scholar
  33. Friedman, R. C., K. K. Farh, C. B. Burge and D. P. Bartel (2009). “Most mammalian mRNAs are conserved targets of microRNAs.” Genome Res 19(1): 92–105.PubMedCrossRefGoogle Scholar
  34. Gartel, A. L., X. Ye, E. Goufman, P. Shianov, N. Hay, F. Najmabadi and A. L. Tyner (2001). “Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3.” Proc Natl Acad Sci U S A 98(8): 4510–15.PubMedCrossRefGoogle Scholar
  35. Giuriato, S., S. Ryeom, A. C. Fan, P. Bachireddy, R. C. Lynch, M. J. Rioth, J. van Riggelen, A. M. Kopelman, E. Passegue, F. Tang, J. Folkman and D. W. Felsher (2006). “Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch.” Proc Natl Acad Sci U S A 103(44): 16266–71.PubMedCrossRefGoogle Scholar
  36. Good, D. J., P. J. Polverini, F. Rastinejad, M. M. Le Beau, R. S. Lemons, W. A. Frazier and N. P. Bouck (1990). “A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin.” Proc Natl Acad Sci U S A 87(17): 6624–8.PubMedCrossRefGoogle Scholar
  37. Gordan, J. D. and M. C. Simon (2007). “Hypoxia-inducible factors: central regulators of the tumor phenotype.” Curr Opin Genet Dev 17(1): 71–7.PubMedCrossRefGoogle Scholar
  38. Gordan, J. D., C. B. Thompson and M. C. Simon (2007a). “HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation.” Cancer Cell 12(2): 108–13.PubMedCrossRefGoogle Scholar
  39. Gordan, J. D., J. A. Bertout, C. J. Hu, J. A. Diehl and M. C. Simon (2007b). “HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity.” Cancer Cell 11(4): 335–47.PubMedCrossRefGoogle Scholar
  40. Grandori, C., S. M. Cowley, L. P. James and R. N. Eisenman (2000). “The Myc/Max/Mad network and the transcriptional control of cell behavior.” Annu Rev Cell Dev Biol 16: 653–99.PubMedCrossRefGoogle Scholar
  41. Grandori, C., N. Gomez-Roman, Z. A. Felton-Edkins, C. Ngouenet, D. A. Galloway, R. N. Eisenman and R. J. White (2005). “c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I.” Nat Cell Biol 7(3): 311–8.PubMedCrossRefGoogle Scholar
  42. Grewal, S. S., L. Li, A. Orian, R. N. Eisenman and B. A. Edgar (2005). “Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development.” Nat Cell Biol 7(3): 295–302.PubMedCrossRefGoogle Scholar
  43. Grugel, S., G. Finkenzeller, K. Weindel, B. Barleon and D. Marme (1995). “Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells.” J Biol Chem 270(43): 25915–9.PubMedCrossRefGoogle Scholar
  44. Guo, N. H., H. C. Krutzsch, J. K. Inman, C. S. Shannon and D. D. Roberts (1997). “Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin-1.” J Pept Res 50(3): 210–21.PubMedCrossRefGoogle Scholar
  45. Hanahan, D. (1985). “Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes.” Nature 315(6015): 115–22.PubMedCrossRefGoogle Scholar
  46. Hatzi, E., C. Murphy, A. Zoephel, H. Ahorn, U. Tontsch, A. M. Bamberger, K. Yamauchi-Takihara, L. Schweigerer and T. Fotsis (2002). “N-myc oncogene overexpression down-regulates leukemia inhibitory factor in neuroblastoma.” Eur J Biochem 269(15): 3732–41.PubMedCrossRefGoogle Scholar
  47. Hoekstra, R., F. Y. de Vos, F. A. Eskens, J. A. Gietema, A. van der Gaast, H. J. Groen, R. A. Knight, R. A. Carr, R. A. Humerickhouse, J. Verweij and E. G. de Vries (2005). “Phase I safety, pharmacokinetic, and pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer.” J Clin Oncol 23(22): 5188–97.PubMedCrossRefGoogle Scholar
  48. Hunter, C. A., D. Yu, M. Gee, C. V. Ngo, C. Sevignani, M. Goldschmidt, T. V. Golovkina, S. Evans, W. F. Lee and A. Thomas-Tikhonenko (2001). “Cutting edge: systemic inhibition of angiogenesis underlies resistance to tumors during acute toxoplasmosis.” J Immunol 166(10): 5878–81.PubMedGoogle Scholar
  49. Inoki, I., T. Shiomi, G. Hashimoto, H. Enomoto, H. Nakamura, K. Makino, E. Ikeda, S. Takata, K. Kobayashi and Y. Okada (2002). “Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis.” FASEB J 16(2): 219–21.PubMedGoogle Scholar
  50. Ioannidis, P., L. Mahaira, A. Papadopoulou, M. R. Teixeira, S. Heim, J. A. Andersen, E. Evangelou, U. Dafni, N. Pandis and T. Trangas (2003). “8q24 Copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in primary breast carcinomas.” Int J Cancer 104(1): 54–9.PubMedCrossRefGoogle Scholar
  51. Iritani, B. M. and R. N. Eisenman (1999). “c-Myc enhances protein synthesis and cell size during B lymphocyte development.” Proc Natl Acad Sci U S A 96(23): 13180–5.PubMedCrossRefGoogle Scholar
  52. Iruela-Arispe, M. L., M. Lombardo, H. C. Krutzsch, J. Lawler and D. D. Roberts (1999). “Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats.” Circulation 100(13): 1423–31.PubMedGoogle Scholar
  53. Janz, A., C. Sevignani, K. Kenyon, C. V. Ngo and A. Thomas-Tikhonenko (2000). “Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA.” Nucleic Acids Res 28(11): 2268–75.PubMedCrossRefGoogle Scholar
  54. Johnston, L. A., D. A. Prober, B. A. Edgar, R. N. Eisenman and P. Gallant (1999). “Drosophila myc regulates cellular growth during development.” Cell 98(6): 779–90.PubMedCrossRefGoogle Scholar
  55. Kang, J., P. G. Rychahou, T. A. Ishola, J. M. Mourot, B. M. Evers and D. H. Chung (2008). “N-myc is a novel regulator of PI3K-mediated VEGF expression in neuroblastoma.” Oncogene 27(28): 3999–4007.PubMedCrossRefGoogle Scholar
  56. Kelly, B. D., S. F. Hackett, K. Hirota, Y. Oshima, Z. Cai, S. Berg-Dixon, A. Rowan, Z. Yan, P. A. Campochiaro and G. L. Semenza (2003). “Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1.” Circ Res 93(11): 1074–81.PubMedCrossRefGoogle Scholar
  57. Kevil, C. G., A. De Benedetti, D. K. Payne, L. L. Coe, F. S. Laroux and J. S. Alexander (1996). “Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis.” Int J Cancer 65(6): 785–90.PubMedCrossRefGoogle Scholar
  58. Kim, J. W., P. Gao, Y. C. Liu, G. L. Semenza and C. V. Dang (2007). “Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1.” Mol Cell Biol 27(21): 7381–93.PubMedCrossRefGoogle Scholar
  59. Knies-Bamforth, U. E., S. B. Fox, R. Poulsom, G. I. Evan and A. L. Harris (2004). “c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism.” Cancer Res 64(18): 6563–70.PubMedCrossRefGoogle Scholar
  60. Kohl, N. E., N. Kanda, R. R. Schreck, G. Bruns, S. A. Latt, F. Gilbert and F. W. Alt (1983). “Transposition and amplification of oncogene-related sequences in human neuroblastomas.” Cell 35(2 Pt 1): 359–67.PubMedCrossRefGoogle Scholar
  61. Koshiji, M., Y. Kageyama, E. A. Pete, I. Horikawa, J. C. Barrett and L. E. Huang (2004). “HIF-1alpha induces cell cycle arrest by functionally counteracting Myc.” EMBO J 23(9): 1949–56.PubMedCrossRefGoogle Scholar
  62. Land, H., L. F. Parada and R. A. Weinberg (1983). “Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes.” Nature 304(5927): 596–602.PubMedCrossRefGoogle Scholar
  63. Lau, L. F. and S. C. Lam (1999). “The CCN family of angiogenic regulators: the integrin connection.” Exp Cell Res 248(1): 44–57.PubMedCrossRefGoogle Scholar
  64. Laurenti, E., B. Varnum-Finney, A. Wilson, I. Ferrero, W. E. Blanco-Bose, A. Ehninger, P. S. Knoepfler, P. F. Cheng, H. R. MacDonald, R. N. Eisenman, I. D. Bernstein and A. Trumpp (2008). “Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.” Cell Stem Cell 3(6): 611–24.PubMedCrossRefGoogle Scholar
  65. Li, Q. and C. V. Dang (1999). “c-Myc overexpression uncouples DNA replication from mitosis.” Mol Cell Biol 19(8): 5339–51.PubMedGoogle Scholar
  66. Liu, J., M. A. Valencia-Sanchez, G. J. Hannon and R. Parker (2005). “MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.” Nat Cell Biol 7(7): 719–23.PubMedCrossRefGoogle Scholar
  67. Mai, S., J. Hanley-Hyde and M. Fluri (1996). “c-Myc overexpression associated DHFR gene amplification in hamster, rat, mouse and human cell lines.” Oncogene 12(2): 277–88.PubMedGoogle Scholar
  68. Manalo, D. J., A. Rowan, T. Lavoie, L. Natarajan, B. D. Kelly, S. Q. Ye, J. G. Garcia and G. L. Semenza (2005). “Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1.” Blood 105(2): 659–69.PubMedCrossRefGoogle Scholar
  69. McMahon, S. B., H. A. Van Buskirk, K. A. Dugan, T. D. Copeland and M. D. Cole (1998). “The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins.” Cell 94(3): 363–74.PubMedCrossRefGoogle Scholar
  70. Meyer, N. and L. Z. Penn (2008). “Reflecting on 25 years with MYC.” Nat Rev Cancer 8(12): 976–90.PubMedCrossRefGoogle Scholar
  71. Mezquita, P., S. S. Parghi, K. A. Brandvold and A. Ruddell (2005). “Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation.” Oncogene 24(5): 889–901.PubMedCrossRefGoogle Scholar
  72. Miao, W. M., W. L. Seng, M. Duquette, P. Lawler, C. Laus and J. Lawler (2001). “Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms.” Cancer Res 61(21): 7830–9.PubMedGoogle Scholar
  73. Moritani, N. H., S. Kubota, T. Nishida, H. Kawaki, S. Kondo, T. Sugahara and M. Takigawa (2003). “Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line.” Cancer Lett 192(2): 205–14.PubMedCrossRefGoogle Scholar
  74. Morse, B., P. G. Rotherg, V. J. South, J. M. Spandorfer and S. M. Astrin (1988). “Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma.” Nature 333(6168): 87–90.PubMedCrossRefGoogle Scholar
  75. Mukhopadhyay, D., L. Tsiokas and V. P. Sukhatme (1995). “Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression.” Cancer Res 55(24): 6161–5.PubMedGoogle Scholar
  76. Murphy, D. J., M. R. Junttila, L. Pouyet, A. Karnezis, K. Shchors, D. A. Bui, L. Brown-Swigart, L. Johnson and G. I. Evan (2008). “Distinct thresholds govern Myc's biological output in vivo.” Cancer Cell 14(6): 447–57.PubMedCrossRefGoogle Scholar
  77. Naumov, G. N., L. A. Akslen and J. Folkman (2006). “Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch.” Cell Cycle 5(16): 1779–87.PubMedCrossRefGoogle Scholar
  78. Naumov, G. N., J. Folkman and O. Straume (2008). “Tumor dormancy due to failure of angiogenesis: role of the microenvironment.” Clin Exp Metastasis.Google Scholar
  79. Neiman, P. E., A. Ruddell, C. Jasoni, G. Loring, S. J. Thomas, K. A. Brandvold, R. Lee, J. Burnside and J. Delrow (2001). “Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius.” Proc Natl Acad Sci U S A 98(11): 6378–83.PubMedCrossRefGoogle Scholar
  80. Ngo, C. V., M. Gee, N. Akhtar, D. Yu, O. Volpert, R. Auerbach and A. Thomas-Tikhonenko (2000). “An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype.” Cell Growth Differ 11(4): 201–10.PubMedGoogle Scholar
  81. Nyberg, P., T. Salo and R. Kalluri (2008). “Tumor microenvironment and angiogenesis.” Front Biosci 13: 6537–53.PubMedCrossRefGoogle Scholar
  82. O'Donnell, K. A., E. A. Wentzel, K. I. Zeller, C. V. Dang and J. T. Mendell (2005). “c-Myc-regulated microRNAs modulate E2F1 expression.” Nature 435(7043): 839–43.PubMedCrossRefGoogle Scholar
  83. O'Reilly, M. S. (1997). “Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth.” EXS 79: 273–94.PubMedGoogle Scholar
  84. O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen and J. Folkman (1997). “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.” Cell 88(2): 277–85.PubMedCrossRefGoogle Scholar
  85. Okada, F., J. W. Rak, B. S. Croix, B. Lieubeau, M. Kaya, L. Roncari, S. Shirasawa, T. Sasazuki and R. S. Kerbel (1998). “Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells.” Proc Natl Acad Sci U S A 95(7): 3609–14.PubMedCrossRefGoogle Scholar
  86. Pelengaris, S., T. Littlewood, M. Khan, G. Elia and G. Evan (1999). “Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion.” Mol Cell 3(5): 565–77.PubMedCrossRefGoogle Scholar
  87. Perbal, B. (2004). “CCN proteins: multifunctional signalling regulators.” Lancet 363(9402): 62–4.PubMedCrossRefGoogle Scholar
  88. Perez-Atayde, A. R., S. E. Sallan, U. Tedrow, S. Connors, E. Allred and J. Folkman (1997). “Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia.” Am J Pathol 150(3): 815–21.PubMedGoogle Scholar
  89. Peukert, K., P. Staller, A. Schneider, G. Carmichael, F. Hanel and M. Eilers (1997). “An alternative pathway for gene regulation by Myc.” EMBO J 16(18): 5672–86.PubMedCrossRefGoogle Scholar
  90. Rak, J., Y. Mitsuhashi, L. Bayko, J. Filmus, S. Shirasawa, T. Sasazuki and R. S. Kerbel (1995). “Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis.” Cancer Res 55(20): 4575–80.PubMedGoogle Scholar
  91. Rak, J., J. L. Yu, G. Klement and R. S. Kerbel (2000). “Oncogenes and angiogenesis: signaling three-dimensional tumor growth.” J Investig Dermatol Symp Proc 5(1): 24–33.PubMedCrossRefGoogle Scholar
  92. Rastinejad, F., P. J. Polverini and N. P. Bouck (1989). “Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene.” Cell 56(3): 345–55.PubMedCrossRefGoogle Scholar
  93. Ravi, R., B. Mookerjee, Z. M. Bhujwalla, C. H. Sutter, D. Artemov, Q. Zeng, L. E. Dillehay, A. Madan, G. L. Semenza and A. Bedi (2000). “Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha.” Genes Dev 14(1): 34–44.PubMedGoogle Scholar
  94. Reiher, F. K., O. V. Volpert, B. Jimenez, S. E. Crawford, C. P. Dinney, J. Henkin, F. Haviv, N. P. Bouck and S. C. Campbell (2002). “Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics.” Int J Cancer 98(5): 682–9.PubMedCrossRefGoogle Scholar
  95. Ren, B., K. O. Yee, J. Lawler and R. Khosravi-Far (2006). “Regulation of tumor angiogenesis by thrombospondin-1.” Biochim Biophys Acta 1765(2): 178–88.PubMedGoogle Scholar
  96. Rosenwald, I. B., D. B. Rhoads, L. D. Callanan, K. J. Isselbacher and E. V. Schmidt (1993). “Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc.” Proc Natl Acad Sci U S A 90(13): 6175–8.PubMedCrossRefGoogle Scholar
  97. Ruddell, A., P. Mezquita, K. A. Brandvold, A. Farr and B. M. Iritani (2003). “B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis.” Am J Pathol 163(6): 2233–45.PubMedCrossRefGoogle Scholar
  98. Saaristo, A., T. Karpanen and K. Alitalo (2000). “Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis.” Oncogene 19(53): 6122–9.PubMedCrossRefGoogle Scholar
  99. Schuhmacher, M., M. S. Staege, A. Pajic, A. Polack, U. H. Weidle, G. W. Bornkamm, D. Eick and F. Kohlhuber (1999). “Control of cell growth by c-Myc in the absence of cell division.” Curr Biol 9(21): 1255–8.PubMedCrossRefGoogle Scholar
  100. Schulte, J. H., S. Horn, T. Otto, B. Samans, L. C. Heukamp, U. C. Eilers, M. Krause, K. Astrahantseff, L. Klein-Hitpass, R. Buettner, A. Schramm, H. Christiansen, M. Eilers, A. Eggert and B. Berwanger (2008). “MYCN regulates oncogenic MicroRNAs in neuroblastoma.” Int J Cancer 122(3): 699–704.PubMedCrossRefGoogle Scholar
  101. Semenza, G. L. (2008). “Hypoxia-inducible factor 1 and cancer pathogenesis.” IUBMB Life 60(9): 591–7.PubMedCrossRefGoogle Scholar
  102. Serban, D., J. Leng and D. Cheresh (2008). “H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors.” Circ Res 102(11): 1350–8.PubMedCrossRefGoogle Scholar
  103. Sevignani, C., P. Wlodarski, J. Kirillova, W. E. Mercer, K. G. Danielson, R. V. Iozzo and B. Calabretta (1998). “Tumorigenic conversion of p53-deficient colon epithelial cells by an activated Ki-ras gene.” J Clin Invest 101(8): 1572–80.PubMedCrossRefGoogle Scholar
  104. Shchors K and Evan G (2007) “Tumor angiogenesis: cause or consequence of cancer?” Cancer Res 67:7059–7061.PubMedCrossRefGoogle Scholar
  105. Shchors, K., E. Shchors, F. Rostker, E. R. Lawlor, L. Brown-Swigart and G. I. Evan (2006). “The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta.” Genes Dev 20(18): 2527–38.PubMedCrossRefGoogle Scholar
  106. Shimo, T., S. Kubota, S. Kondo, T. Nakanishi, A. Sasaki, H. Mese, T. Matsumura and M. Takigawa (2001a). “Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line.” Cancer Lett 174(1): 57–64.PubMedCrossRefGoogle Scholar
  107. Shimo, T., T. Nakanishi, T. Nishida, M. Asano, A. Sasaki, M. Kanyama, T. Kuboki, T. Matsumura and M. Takigawa (2001b). “Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis.” Oncology 61(4): 315–22.PubMedCrossRefGoogle Scholar
  108. Shpitz, B., S. Gochberg, D. Neufeld, M. Grankin, G. Buklan, E. Klein and J. Bernheim (2003). “Angiogenic switch in earliest stages of human colonic tumorigenesis.” Anticancer Res 23(6D): 5153–7.PubMedGoogle Scholar
  109. Soucek, L., E. R. Lawlor, D. Soto, K. Shchors, L. B. Swigart and G. I. Evan (2007). “Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors.” Nat Med 13(10): 1211–18.PubMedCrossRefGoogle Scholar
  110. Stein, I., M. Neeman, D. Shweiki, A. Itin and E. Keshet (1995). “Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes.” Mol Cell Biol 15(10): 5363–8.PubMedGoogle Scholar
  111. Storlazzi, C. T., T. Fioretos, K. Paulsson, B. Strombeck, C. Lassen, T. Ahlgren, G. Juliusson, F. Mitelman, M. Rocchi and B. Johansson (2004). “Identification of a commonly amplified 4.3 Mb region with overexpression of C8FW, but not MYC in MYC-containing double minutes in myeloid malignancies.” Hum Mol Genet 13(14): 1479–85.PubMedCrossRefGoogle Scholar
  112. Taguchi, A., K. Yanagisawa, M. Tanaka, K. Cao, Y. Matsuyama, H. Goto and T. Takahashi (2008). “Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17–92 microRNA cluster.” Cancer Res 68(14): 5540–5.PubMedCrossRefGoogle Scholar
  113. Takahashi, Y., L. M. Ellis and M. Mai (2003). “The angiogenic switch of human colon cancer occurs simultaneous to initiation of invasion.” Oncol Rep 10(1): 9–13.PubMedGoogle Scholar
  114. Taub, R., I. Kirsch, C. Morton, G. Lenoir, D. Swan, S. Tronick, S. Aaronson and P. Leder (1982). “Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells.” Proc Natl Acad Sci U S A 79(24): 7837–41.PubMedCrossRefGoogle Scholar
  115. Terai, Y., M. Abe, K. Miyamoto, M. Koike, M. Yamasaki, M. Ueda, M. Ueki and Y. Sato (2001). “Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin alphavbeta3 on vascular endothelial cells.” J Cell Physiol 188(3): 394–402.PubMedCrossRefGoogle Scholar
  116. Thomas-Tikhonenko, A. and C. A. Hunter (2003). “Infection and cancer: the common vein.” Cytokine Growth Factor Rev 14(1): 67–77.PubMedCrossRefGoogle Scholar
  117. Tikhonenko, A. T., D. J. Black and M. L. Linial (1996). “Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene.” J Biol Chem 271(48): 30741–7.PubMedCrossRefGoogle Scholar
  118. Udagawa, T., A. Fernandez, E. G. Achilles, J. Folkman and R. J. D’Amato (2002). “Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy.” FASEB J 16(11): 1361–70.PubMedCrossRefGoogle Scholar
  119. Vacca, A., D. Ribatti, L. Ruco, F. Giacchetta, B. Nico, F. Quondamatteo, R. Ria, M. Iurlaro and F. Dammacco (1999). “Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas.” Br J Cancer 79(5–6): 965–70.PubMedCrossRefGoogle Scholar
  120. Volpert, O. V. and R. M. Alani (2003). “Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1.” Cancer Cell 3(3): 199–200.PubMedCrossRefGoogle Scholar
  121. Volpert, O. V., V. Stellmach and N. Bouck (1995a). “The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression.” Breast Cancer Res Treat 36(2): 119–26.PubMedCrossRefGoogle Scholar
  122. Volpert, O. V., S. S. Tolsma, S. Pellerin, J. J. Feige, H. Chen, D. F. Mosher and N. Bouck (1995b). “Inhibition of angiogenesis by thrombospondin-2.” Biochem Biophys Res Commun 217(1): 326–32.PubMedCrossRefGoogle Scholar
  123. Volpert, O. V., K. M. Dameron and N. Bouck (1997). “Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity.” Oncogene 14(12): 1495–502.PubMedCrossRefGoogle Scholar
  124. Watnick, R. S., Y. N. Cheng, A. Rangarajan, T. A. Ince and R. A. Weinberg (2003). “Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis.” Cancer Cell 3(3): 219–31.PubMedCrossRefGoogle Scholar
  125. Yang, Q., Y. Tian, S. Liu, R. Zeine, A. Chlenski, H. R. Salwen, J. Henkin and S. L. Cohn (2007). “Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma.” Cancer Res 67(4): 1716–24.PubMedCrossRefGoogle Scholar
  126. Zeller, K. I., X. Zhao, C. W. Lee, K. P. Chiu, F. Yao, J. T. Yustein, H. S. Ooi, Y. L. Orlov, A. Shahab, H. C. Yong, Y. Fu, Z. Weng, V. A. Kuznetsov, W. K. Sung, Y. Ruan, C. V. Dang and C. L. Wei (2006). “Global mapping of c-Myc binding sites and target gene networks in human B cells.” Proc Natl Acad Sci U S A 103(47): 17834–9.PubMedCrossRefGoogle Scholar
  127. Zhang, H., P. Gao, R. Fukuda, G. Kumar, B. Krishnamachary, K. I. Zeller, C. V. Dang and G. L. Semenza (2007). “HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity.” Cancer Cell 11(5): 407–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Prema Sundaram
    • 1
  • Chi V. Dang
    • 2
  • Andrei Thomas-Tikhonenko
    • 3
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.University of Pennsylvania and the Children’s Hospital of Philadelphia, 516H Abramson Research CenterPhiladelphiaUSA

Personalised recommendations