von Hippel-Lindau Tumor Suppressor, Hypoxia-Inducible Factor-1, and Tumor Vascularization

  • Huafeng Zhang
  • Gregg L. Semenza
Part of the Cancer Genetics book series (CANGENETICS)


von Hippel–Lindau (VHL) disease is an autosomal dominant, familial cancer syndrome that is characterized by the development of various benign and malignant tumors. The most frequent tumors are hemangioblastoma (HB) in the central nervous system (CNS), pheochromocytoma (Pheo), and renal-cell carcinoma of the clear-cell type (RCC). VHL families have been subdivided into those with a low risk of pheochromocytoma (type 1 VHL disease) and those with a high risk of pheochromocytoma (type 2 VHL disease). VHL type 2 disease is further classified into three categories: type 2A, type 2B, and type 2C. Type 2A VHL disease has pheochromocytoma and hemangioblastoma in the CNS, but not RCC. Type 2B exhibits pheochromocytoma, RCC, and hemangioblastoma. Type 2C disease has only pheochromocytoma, without hemangioblastoma or RCC.


Vascular Endothelial Growth Factor Atypical Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez R.H., Kantarjian H.M., Cortes J.E. (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81:1241–1257.PubMedCrossRefGoogle Scholar
  2. Atkins M.B., Hidalgo M., Stadler W.M., Logan T.F., Dutcher J.P., Hudes G.R., Park Y., Liou S.H., Marshall B., Boni J.P., Dukart G., Sherman M.L. (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22:909–918.PubMedCrossRefGoogle Scholar
  3. Blankenship C., Naglich J.G., Whaley J.M., Seizinger B., Kley N. (1999) Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity. Oncogene 18:1529–1535.PubMedCrossRefGoogle Scholar
  4. Brauch H., Weirich G., Brieger J., Glavac D., Rodl H., Eichinger M., Feurer M., Weidt E., Puranakanitstha C., Neuhaus C., Pomer S., Brenner W., Schirmacher P., Storkel S., Rotter M., Masera A., Gugeler N., Decker H.J. (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60:1942–1948.PubMedGoogle Scholar
  5. Bruick R.K. and McKnight S.L. (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.PubMedCrossRefGoogle Scholar
  6. Carmeliet P. and Jain R.K. (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257.PubMedCrossRefGoogle Scholar
  7. Choyke P.L, Glenn G.M., Walther M.M., Zbar B., Linehan W.M. (2003) Hereditary renal cancers. Radiology 226:33–46.PubMedCrossRefGoogle Scholar
  8. Clifford S., Cockman M., Smallwood A.C., Mole D.R., Woodward E.R., Maxwell P.H., Ratcliffe P.J., Maher E.R. (2001) Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10: 1029–1038.PubMedCrossRefGoogle Scholar
  9. Cohen H.T. and McGovern F.J. (2005) Renal-cell carcinoma. N Engl J Med 353:2477–2490.PubMedCrossRefGoogle Scholar
  10. Elvidge G.P., Glenny L., Appelhoff R.J., Ratcliffe P.J., Ragoussis J., Gleadle J.M. (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1α, HIF-2α, and other pathways. J Biol Chem 281:15215–15226.PubMedCrossRefGoogle Scholar
  11. Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O’Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P.H., Pugh C.W., Schofield C.J., Ratcliffe P.J. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.PubMedCrossRefGoogle Scholar
  12. Escudier B., Eisen T., Stadler W.M., Szczylik C., Oudard S., Siebels M., Negrier S., Chevreau C., Solska E., Desai A.A., Rolland F., Demkow T., Hutson T.E., Gore M., Freeman S., Schwartz B., Shan M., Simantov R., Bukowski R.M. (2007) TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134.PubMedCrossRefGoogle Scholar
  13. Folkman J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31.PubMedCrossRefGoogle Scholar
  14. Gallou C., Joly D., Mejean A., Staroz F., Martin N., Tarlet G., Orfanelli M.T., Bouvier R., Droz D., Chretien Y., Marechal J.M., Richard S., Junien C., Beroud C. (1999) Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum Mutat 13: 464–475.PubMedCrossRefGoogle Scholar
  15. Gao J., Naglich J.G., Laidlaw J., Whaley J.M., Seizinger B.R., Kley N. (1995) Cloning and characterization of a mouse gene with homology to the human von Hippel–Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel–Lindau disease gene. Cancer Res 55:743–747.PubMedGoogle Scholar
  16. Gnarra J., Ward J., Porter F., Wagner J.R., Devor D.E., Grinberg A., Emmert-Buck M.R., Westphal H., Klausner R.D., Linehan W.M. (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci U S A 94:9102–9107.PubMedCrossRefGoogle Scholar
  17. Hanahan D. and Folkman J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353 – 647.PubMedCrossRefGoogle Scholar
  18. Hoffman M., Ohh M., Yang H., Klco J., Ivan M., Kaelin W. J. (2001) von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 10:1019–1027.PubMedCrossRefGoogle Scholar
  19. Hudson C.C., Liu M., Chiang G.G., Otterness D.M., Loomis D.C., Kaper F., Giaccia A.J., Abraham R.T. (2002) Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014.PubMedCrossRefGoogle Scholar
  20. Iliopoulos O., Kibel A., Gray S., Kaelin W.G. (1995) Tumour suppression by the human von Hippel–Lindau gene product. Nat Med 1:822–826.PubMedCrossRefGoogle Scholar
  21. Iliopoulos O., Levy A.P., Jiang C., Kaelin W.G. (1996) Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93:10595–10599.PubMedCrossRefGoogle Scholar
  22. Isaacs J.S., Xu W., Neckers L. (2003) Heat shock protein 90 as a molecular target for cancer therapeutics, Cancer Cell 3:213–217.PubMedCrossRefGoogle Scholar
  23. Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., Kaelin W.G. (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468.PubMedCrossRefGoogle Scholar
  24. Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A.v. , Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472.PubMedCrossRefGoogle Scholar
  25. Jiang B.H., Rue E., Wang G.L., Semenza G.L. (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778.PubMedCrossRefGoogle Scholar
  26. Kaelin W.G. (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290–6295SCrossRefGoogle Scholar
  27. Kelly B.D., Hackett S.F., Hirota K., Oshima Y., Cai Z., Berg-Dixon S., Rowan A., Yan Z., Campochiaro P.A., Semenza G.L. (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 93:1074–1081.PubMedCrossRefGoogle Scholar
  28. Kim W.Y. and Kaelin W.G. (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004.PubMedCrossRefGoogle Scholar
  29. Knudson A.G. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823.PubMedCrossRefGoogle Scholar
  30. Kondo K., Yao M., Yoshida M., Kishida T., Shuin T., Miura T., Moriyama M., Kobayashi K., Sakai N., Kaneko S., Kawakami S., Baba M., Nakaigawa N., Nagashima Y., Nakatani Y., Hosaka M. (2002) Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer 34:58–68.PubMedCrossRefGoogle Scholar
  31. Kung A.L., Zabludoff S.D., France D.S., Freedman S.J., Tanner E.A., Vieira A., Cornell-Kennon S., Lee J., Wang B., Wang J., Memmert K., Naegeli H.U., Petersen F., Eck M.J., Bair K.W., Wood A.W., Livingston D.M. (2004) Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway, Cancer Cell 6:33–34.PubMedCrossRefGoogle Scholar
  32. Lando D., Peet D.J., Gorman J.J., Whelan D.A., Whitelaw M.L., Bruick R.K. (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471.PubMedCrossRefGoogle Scholar
  33. Latif F., Tory K., Gnarra J., Yao M., Duh F.M., Orcutt M.L., Stackhouse T., Kuzmin I., Modi W., Geil L. (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320.PubMedCrossRefGoogle Scholar
  34. Lee S., Nakamura E., Yang H., Wei W., Linggi M.S., Sajan M.P., Farese R.V., Freeman R.S., Carter B.D., Kaelin W.G., Schlisio S. (2005) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167.PubMedCrossRefGoogle Scholar
  35. Liu Y.V., Baek J.H., Zhang H., Diez R., Cole R.N., Semenza G.L. (2007) RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell 25:207–217.PubMedCrossRefGoogle Scholar
  36. Ma X., Yang K., Lindblad P., Egevad L., Hemminki K. (2001) VHL gene alterations in renal cell carcinoma patients: novel hotspot or founder mutations and linkage disequilibrium. Oncogene 20:5393–5400.PubMedCrossRefGoogle Scholar
  37. Ma W., Tessarollo L., Hong S.B., Baba M., Southon E., Back T.C., Spence S., Lobe C.G., Sharma N., Maher G.W., Pack S., Vortmeyer A.O., Guo C., Zbar B., Schmidt L.S. (2003) Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res 63:5320–5328.PubMedGoogle Scholar
  38. Mabjeesh N.J., Escuin D., LaVallee T.M., Pribluda V.S., Swartz G.M., Johnson M.S., Willard M.T., Zhong H., Simons J.W., Giannakakou P. (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:363–375.PubMedCrossRefGoogle Scholar
  39. Macpherson G.R. and Figg W.D. (2004) Small molecule-mediated anti-cancer therapy via hypoxia-inducible factor-1 blockade. Cancer Biol Ther 3:503–504.PubMedGoogle Scholar
  40. Makino Y., Cao R., Svensson K., Bertilsson G., Asman M., Tanaka H., Cao Y., Berkenstam A., Poellinger L. (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554.PubMedCrossRefGoogle Scholar
  41. Manalo D.J., Rowan A., Lavoie T., Natarajan L., Kelly B.D., Ye S.Q., Garcia J.G., Semenza G.L. (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669.PubMedCrossRefGoogle Scholar
  42. Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275.PubMedCrossRefGoogle Scholar
  43. Motzer R.J., Michaelson M.D., Redman B.G., Hudes G.R., Wilding G., Figlin R.A., Ginsberg M.S., Kim S.T., Baum C.M., DePrimo S.E., Li J.Z., Bello C.L., Theuer C.P., George D.J., Rini B.I. (2006a) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24.PubMedCrossRefGoogle Scholar
  44. Motzer R.J., Rini B.I., Bukowski R.M., Curti B.D., George D.J., Hudes G.R., Redman B.G., Margolin K.A., Merchan J.R., Wilding G., Ginsberg M.S., Bacik J., Kim S.T., Baum C.M., Michaelson M.D. (2006b) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524.PubMedCrossRefGoogle Scholar
  45. Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.Y., Huang L.E., Pavletich N., Chau V., Kaelin W.G. (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427.PubMedCrossRefGoogle Scholar
  46. Okuda H., Hirai S., Takaki Y., Kamada M., Baba M., Sakai N., Kishida T., Kaneko S., Yao M., Ohno S., Shuin T. (1999) Direct interaction of the ß-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. Biochem Biophys Res Commun 263:491–497.PubMedCrossRefGoogle Scholar
  47. Okuda H., Saitoh K., Hirai S., Iwai K., Takaki Y., Baba M., Minato N., Ohno S., Shuin T. (2001) The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 276:43611–43617.PubMedCrossRefGoogle Scholar
  48. Pal S., Claffey K., Dvorak H., Mukhopadhyay D. (1997) The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways. J Biol Chem 272:27509–27512.PubMedCrossRefGoogle Scholar
  49. Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M., Klausner R.D. (1997) The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A 94: 2156–2161.PubMedCrossRefGoogle Scholar
  50. Ravi R., Mookerjee B., Bhujwalla Z.M., Sutter C.H., Artemov D., Zeng Q., Dillehay L.E., Madan A., Semenza G.L., Bedi A. (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev 14:34–44.PubMedGoogle Scholar
  51. Semenza G.L. (2000) HIF-1: using two hands to flip the angiogenic switch, Cancer Metastasis Rev 19:59–65.PubMedCrossRefGoogle Scholar
  52. Semenza G.L. (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732.PubMedCrossRefGoogle Scholar
  53. Semenza G.L. and Wang G.L. (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454.PubMedGoogle Scholar
  54. Stebbins C.E., Kaelin W.G., Pavletich N.P. (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461.PubMedCrossRefGoogle Scholar
  55. Stohrer M., Boucher Y., Stangassinger M. and Jain R.K. (2000) Oncotic pressure in solid tumors is elevated, Cancer Res 60:4215–4255.Google Scholar
  56. Talks K.L., Turley H., Gatter K.C., Maxwell P.H., Pugh C.W., Ratcliffe P.J., Harris A.L. (2000) The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages, Am J Pathol 157:411–421.PubMedCrossRefGoogle Scholar
  57. Tian H., McKnight S.L., Russell D.W. (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82.PubMedCrossRefGoogle Scholar
  58. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514.PubMedCrossRefGoogle Scholar
  59. Welsh S., Williams R., Kirkpatrick L., Paine-Murrieta G., Powis G. (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol Cancer Ther 3:233–244.PubMedGoogle Scholar
  60. Yang J.C., Haworth L., Sherry R.M., Hwu P., Schwartzentruber D.J., Topalian S.L., Steinberg S.M., Chen H.X., Rosenberg S.A. (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434.PubMedCrossRefGoogle Scholar
  61. Yao M., Tabuchi H., Nagashima Y., Baba M., Nakaigawa N., Ishiguro H., Hamada K., Inayama Y., Kishida T., Hattori K., Yamada-Okabe H., Kubota Y. (2005) Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 205:377–387.PubMedCrossRefGoogle Scholar
  62. Yu F., White S.B., Zhao Q., Lee F.S. (2001) HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98:9630–9635.PubMedCrossRefGoogle Scholar
  63. Zhong H., De Marzo A.M., Laughner E., Lim M., Hilton D.A., Zagzag D., Buechler P., Isaacs W.B., Semenza G.L., Simons J.W. (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59:5830–5835.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Pediatrics, Medicine, Oncology, and Radiation OncologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations