Advertisement

Ink4a Locus: Beyond Cell Cycle

  • Greg H. Enders
Chapter
Part of the Cancer Genetics book series (CANGENETICS)

Abstract

p16 is an established suppressor of both “liquid” and solid tumors, with the latter being the most prominent. Major human cancer types with regular inactivation of p16 include melanoma, adenocarcinoma of the breast, squamous cell carcinomas of the lung, pancreatic adenocarcinomas, and colorectal carcinomas (Baylin et al. 1998; Pollack, Pearson, and Hayward 1996). In pancreatic adenocarcinoma, the frequency of p16 inactivation approaches 100% (Caldas et al. 1994; Schutte et al. 1997). Mechanisms of inactivation run the gamut from large deletions to point mutations and promoter methylation (Baylin et al. 1998). Germ line p16 mutations in humans are now known to predispose to melanoma (Kamb et al. 1994b)

Keywords

Vascular Endothelial Growth Factor Adenomatous Polyposis Coli Pancreatic Adenocarcinoma Vascular Endothelial Growth Factor Expression Vascular Endothelial Growth Factor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguirre, A. J., N. Bardeesy, M. Sinha, L. Lopez, D. A. Tuveson, J. Horner, M. S. Redston, and R. A. DePinho (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17 (24):3112–26.PubMedCrossRefGoogle Scholar
  2. Alcorta, D.A., Y. Xiong, D. Phelps, G. Hannon, D. Beach, and J.C. Barret (1996) Involvement of the cyclin-dependent kinase inhibitor p16(INK4a) in replicative senescence of normal human fibroblasts. PNAS 93:13742–7.PubMedCrossRefGoogle Scholar
  3. Baudino, T. A., C. McKay, H. Pendeville-Samain, J. A. Nilsson, K. H. Maclean, E. L. White, A. C. Davis, J. N. Ihle, and J. L. Cleveland (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16 (19):2530–43.PubMedCrossRefGoogle Scholar
  4. Baylin, S. B., J. G. Herman, J. R. Graff, P. M. Vertino, and J.-P. Issa (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Can Res 72:141–96.CrossRefGoogle Scholar
  5. Brenner, A. J., M. R. Stampfer, and C. M. Aldaz (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17 (2):199–205.PubMedCrossRefGoogle Scholar
  6. Caldas, C., S. A. Hahn, L. T. da Costa, M. S. Redston, M. Schutte, A. B. Seymour, C. L. Weinstein, R. H. Hruban, C. J. Yeo, and S. E. Kern (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genetics 8:27–32.PubMedCrossRefGoogle Scholar
  7. Chaubert, P., R. Gayer, A. Zimmermann, C. Fontolliet, B. Stamm, F. Bosman, and P. Shaw (1997) Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma. Hepatology 25 (6):1376–81.PubMedCrossRefGoogle Scholar
  8. Clarke, M. F., J. E. Dick, P. B. Dirks, C. J. Eaves, C. H. Jamieson, D. L. Jones, J. Visvader, I. L. Weissman, and G. M. Wahl (2006) Cancer Stem Cells–Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells. Cancer Res 66 (19):9339–44.PubMedCrossRefGoogle Scholar
  9. Claudio, P. P., P. Stiegler, C. M. Howard, C. Bellan, C. Minimo, G. M. Tosi, J. Rak, A. Kovatich, P. De Fazio, P. Micheli, M. Caputi, L. Leoncini, R. Kerbel, G. G. Giordano, and A. Giordano (2001) RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 61 (2):462–8.PubMedGoogle Scholar
  10. Clurman, B. E. and M. Groudine (1998) The CDKN2A tumor-suppressor locus–a tale of two proteins [editorial; comment]. New England Journal of Medicine 338 (13):910–12.PubMedCrossRefGoogle Scholar
  11. Crawford, Y. G., M. L. Gauthier, A. Joubel, K. Mantei, K. Kozakiewicz, C. A. Afshari, and T. D. Tlsty (2004) Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5 (3):263–73.PubMedCrossRefGoogle Scholar
  12. Dai, C. Y., E. E. Furth, R. Mick, J. Koh, T. Takayama, Y. Niitsu, and G. H. Enders (2000) p16(INK4a) expression begins early in human colon neoplasia and correlates inversely with markers of cell proliferation. Gastroenterology 119 (4):929–42.PubMedCrossRefGoogle Scholar
  13. Dews, M., A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E. E. Furth, W. M. Lee, G. H. Enders, J. T. Mendell, and A. Thomas-Tikhonenko (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38 (9):1060–5.PubMedCrossRefGoogle Scholar
  14. Erickson, S., O. Sangfelt, M. Heyman, J. Castro, S. Einhorn, and D. Grander (1998) Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene 17 (5):595–602.PubMedCrossRefGoogle Scholar
  15. Furth, E. E., K. S. Gustafson, C. Y. Dai, S. L. Gibson, P. Menard-Katcher, T. Chen, J. Koh, and G. H. Enders (2006) Induction of the tumor-suppressor p16(INK4a) within regenerative epithelial crypts in ulcerative colitis. Neoplasia 8 (6):429–36.PubMedCrossRefGoogle Scholar
  16. Gibson, S. L., C. Y. Dai, H.-W. Lee, R. A. DePinho, M. S. Gee, W. M. F. Lee, E. E. Furth, C. Brensinger, and G. H. Enders (2003) Inhibition of colon tumor progression by the Ink4a/Arf locus. Cancer Research 63 (4):742–6.PubMedGoogle Scholar
  17. Gibson, S. L., A. Boquoi, T. Chen, N. E. Sharpless, C. Brensinger, and G. H. Enders (2005) p16(Ink4a) inhibits histologic progression and angiogenic signaling in min colon tumors. Cancer Biol Ther 4 (12):1389–94.PubMedCrossRefGoogle Scholar
  18. Goldstein, A. M., M. C. Fraser, J. P. Struewig, C. J. Hussussian, K. Ranade, D. P. Zametkin, L. S. Fontaine, S. M. Organic, N. C. Dracopoli, W. H. Clark, and M. A. Tucker (1995) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. New Engl J Med 333:970–4.PubMedCrossRefGoogle Scholar
  19. Guney, I., S. Wu, and J. M. Sedivy (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci U S A 103 (10):3645–50.PubMedCrossRefGoogle Scholar
  20. Haber, D (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91:555–8.PubMedCrossRefGoogle Scholar
  21. Harada, H., K. Nakagawa, S. Iwata, M. Saito, Y. Kumon, S. Sakaki, K. Sato, and K. Hamada (1999) Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 59 (15):3783–9.PubMedGoogle Scholar
  22. Hingorani, S. R., E. F. Petricoin, A. Maitra, V. Rajapakse, C. King, M. A. Jacobetz, S. Ross, T. P. Conrads, T. D. Veenstra, B. A. Hitt, Y. Kawaguchi, D. Johann, L. A. Liotta, H. C. Crawford, M. E. Putt, T. Jacks, C. V. Wright, R. H. Hruban, A. M. Lowy, and D. A. Tuveson (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4 (6):437–50.PubMedCrossRefGoogle Scholar
  23. Holland, E. C., W. P. Hively, R. A. DePinho, and H. E. Varmus (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12 (23):3675–85.PubMedCrossRefGoogle Scholar
  24. Hurwitz, H., L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N. Ferrara, G. Fyfe, B. Rogers, R. Ross, and F. Kabbinavar (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350 (23):2335–42.PubMedCrossRefGoogle Scholar
  25. Jacobs, J. J., K. Kieboom, S. Marino, R. A. DePinho, and M. van Lohuizen (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397 (6715):164–8.PubMedCrossRefGoogle Scholar
  26. Janzen, V., R. Forkert, H. E. Fleming, Y. Saito, M. T. Waring, D. M. Dombkowski, T. Cheng, R. A. DePinho, N. E. Sharpless, and D. T. Scadden (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443 (7110):421–6.PubMedGoogle Scholar
  27. Jarrard, D. F., S. Sarkar, Y. Shi, T. R. Yeager, G. Magrane, H. Kinoshita, N. Nassif, L. Meisner, M. A. Newton, F. M. Waldman, and C. A. Reznikoff (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59 (12):2957–64.PubMedGoogle Scholar
  28. Kamb, A., N. A. Gruis, J. Weaver-Feldhaus, Q. Liu, K. Harshman, S. V. Tavtigian, E. Stockert, R. S. Day, B. E. Johnson, and M. H. Skolnick (1994a) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–40.PubMedCrossRefGoogle Scholar
  29. Kamb, A., Shattuck-Eidens, D., Eeles, R., Liu, Q., Gruis, N.A., Ding, W., Hussey, C., Tran, T., Miki, Y., Weaver-Feldhaus, J., McClure, M., Aitken, J.F., Anderson, D.E., Bergman, W., Frants, R., Goldgar, D.E., Green, A., MacLennan, R., Martin, N.G., Meyer, L.J., Youl, P., Zone, J.J., Skolnick, M.H., and Cannon-Albright, L.A (1994b) Analysis of the p16 gene (cdkN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genetics 8:22–26.CrossRefGoogle Scholar
  30. Kamijo, T., F. Zindy, M. F. Roussel, D. E. Quelle, J. R. Downing, R. A. Ashburn, G. Grosveld, and C. J. Sherr (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91 (5):649–660.PubMedCrossRefGoogle Scholar
  31. Keith, B. and M. C. Simon (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129 (3):465–72.PubMedCrossRefGoogle Scholar
  32. Knies-Bamforth, U. E., S. B. Fox, R. Poulsom, G. I. Evan, and A. L. Harris (2004) c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res 64 (18):6563–70.PubMedCrossRefGoogle Scholar
  33. Koh, J., G. H. Enders, B. D. Dynlacht, and E. Harlow (1995) Tumor-derived p16 alleles encoding proteins defective in cell cycle inhibition. Nature 375 (8 June):506–10.PubMedCrossRefGoogle Scholar
  34. Korgaonkar, C., L. Zhao, M. Modestou, and D. E. Quelle (2002) ARF function does not require p53 stabilization or Mdm2 relocalization. Mol Cell Biol 22 (1):196–206.PubMedCrossRefGoogle Scholar
  35. Krishnamurthy, J., C. Torrice, M. R. Ramsey, G. I. Kovalev, K. Al-Regaiey, L. Su, and N. E. Sharpless (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114 (9):1299–307.PubMedGoogle Scholar
  36. Krishnamurthy, J., M. R. Ramsey, K. L. Ligon, C. Torrice, A. Koh, S. Bonner-Weir, and N. E. Sharpless (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443 (7110):453–7.PubMedCrossRefGoogle Scholar
  37. Lessard, J. and G. Sauvageau (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423 (6937):255–60.PubMedCrossRefGoogle Scholar
  38. Liggett, W. H., Jr., D. A. Sewell, J. Rocco, S. A. Ahrendt, W. Koch, and D. Sidransky (1996) p16 and p16 beta are potent growth suppressors of head and neck squamous carcinoma cells in vitro. Cancer Research 56 (18):4119–23.PubMedGoogle Scholar
  39. Lukas, J., D. Parry, L. Aagarrd, D. J. Mann, J. Bartkova, M. Strauss, G. Peters, and J. Bartek (1995) Retinoblastoma-protein-dependent inhibition by the tumor-suppressor p16. Nature 375 (8 June):503–6.PubMedCrossRefGoogle Scholar
  40. Matsuura, I., N. G. Denissova, G. Wang, D. He, J. Long, and F. Liu (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430 (6996):226–31.PubMedCrossRefGoogle Scholar
  41. McConnell, B. B., F. J. Gregory, F. J. Stott, E. Hara, and G. Peters (1999) Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes [In Process Citation]. Mol Cell Biol 19 (3):1981–9.PubMedGoogle Scholar
  42. Medema, R. H., R. E. Herrera, F. Lam, and R. A. Weinberg (1995) Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl. Acad. Sci. USA 92:6289–93.PubMedCrossRefGoogle Scholar
  43. Mitra, J., C. Y. Dai, K. Somasundaram, W. S. El-Deiry, K. Satyamoorthy, M. Herlyn, and G. H. Enders (1999) Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Mol Cell Biol 19 (5):3916–28.PubMedGoogle Scholar
  44. Molofsky, A. V., S. G. Slutsky, N. M. Joseph, S. He, R. Pardal, J. Krishnamurthy, N. E. Sharpless, and S. J. Morrison (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443 (7110):448–52.PubMedCrossRefGoogle Scholar
  45. Nielsen, G. P., A. O. Stemmer-Rachamimov, J. Shaw, J. E. Roy, J. Koh, and D. N. Louis (1999) Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab Invest 79 (9):1137–43.PubMedGoogle Scholar
  46. Nobori, T., K. Miura, D. J. Wu, A. Lois, K., Takabayashi, and D. A. Carson (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753–6.PubMedCrossRefGoogle Scholar
  47. Ohtani, N., Z. Zebedee, T. J. Huot, J. A. Stinson, M. Sugimoto, Y. Ohashi, A. D. Sharrocks, G. Peters, and E. Hara (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409 (6823):1067–70.PubMedCrossRefGoogle Scholar
  48. Park, I. K., D. Qian, M. Kiel, M. W. Becker, M. Pihalja, I. L. Weissman, S. J. Morrison, and M. F. Clarke (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423 (6937):302–5.PubMedCrossRefGoogle Scholar
  49. Parry, D., D. Mahony, K. Wills, and E. Lees (1999) Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 19 (3):1775–83.PubMedGoogle Scholar
  50. Passegue, E. and E. F. Wagner (2000) JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. Embo J 19 (12):2969–79.PubMedCrossRefGoogle Scholar
  51. Pollack, P.M., J.V. Pearson, and N.K. Hayward (1996) Compilation of somatic mutations of the CDKN2 gene in human cancers: Non-random distribution of base substitutions. Genes, Chromosomes and Cancer 15:77–88.CrossRefGoogle Scholar
  52. Pomerantz, J., N. Schreiber-Agus, N. J. Liegeois, A. Silverman, L. Alland, L. Chin, J. Potes, K. Chen, I. Orlow, H. W. Lee, C. Cordon-Cardo, and R. A. DePinho (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92 (6):713–23.PubMedCrossRefGoogle Scholar
  53. Quelle, D. E., F. Zindy, R. A. Ashmun, and C. J. Sherr (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83 (6):993–1000.PubMedCrossRefGoogle Scholar
  54. Quelle, D. E., M. Cheng, R. A. Ashmun, and C. J. Sherr (1997) Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci U S A 94 (2):669–73.PubMedCrossRefGoogle Scholar
  55. Ranade, K., C. J. Hussussian, R. S. Sikorski, H. E. Varmus, A. M. Goldstein, M. A. Tucker, M. Serrano, G. J. Hannon, D. Beach, and N. C. Dracopoli (1995) Mutations associated with familial melanoma impair p16INK4 function [letter]. Nature Genetics 10 (1):114–16.PubMedCrossRefGoogle Scholar
  56. Reznikoff, C. A., T.R. Yeager, C. D. Belair, E. Savelia, J. A. Puthenveetil, and W. M. Stadler (1996) Elevated p16 at senescence and loss of p16 at immortalization in human papillomovirus 16 E6, but not E7, transformed human uroepithelial cells. Canc Res 56:2886–90.Google Scholar
  57. Robles, S. J. and G. R. Adami (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16 (9):1113–23.PubMedCrossRefGoogle Scholar
  58. Schutte, M., R. H. Hruban, J. Geradts, R. Maynard, W. Hilgers, S. K. Rabindran, C. A. Moskaluk, S. A. Hahn, I. Schwarte-Waldhoff, W. Schmiegel, S. B. Baylin, S. E. Kern, and J. G. Herman (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57 (15):3126–30.PubMedGoogle Scholar
  59. Serrano, M., G. J. Hannon, and D. Beach (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366 (6456):704–7.PubMedCrossRefGoogle Scholar
  60. Serrano, M., E. Gomez-Lahoz, R. A. DePinho, D. Beach, and D. Bar-Sagi (1995) Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 267 (5195):249–52.PubMedCrossRefGoogle Scholar
  61. Serrano, M., H. Lee, L. Chin, C. Cordon-Cardo, D. Beach, and R. A. DePinho (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85 (1):27–37.PubMedCrossRefGoogle Scholar
  62. Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88 (5):593–602.PubMedCrossRefGoogle Scholar
  63. Sharpless, N. E., N. Bardeesy, K. H. Lee, D. Carrasco, D. H. Castrillon, A. J. Aguirre, E. A. Wu, J. W. Horner, and R. A. DePinho (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413 (6851):86–91.PubMedCrossRefGoogle Scholar
  64. Sherr, C. J (1996) Cancer cell cycles. Science 274:1672–7.PubMedCrossRefGoogle Scholar
  65. Skinner, S. A., G. M. Frydman, and P. E. O'Brien (1995) Microvascular structure of benign and malignant tumors of the colon in humans. Dig Dis Sci 40 (2):373–84.PubMedCrossRefGoogle Scholar
  66. Takeuchi, H., S. Ozawa, C. H. Shih, N. Ando, Y. Kitagawa, M. Ueda, and M. Kitajima (2004) Loss of p16INK4a expression is associated with vascular endothelial growth factor expression in squamous cell carcinoma of the esophagus. Int J Cancer 109 (4):483–90.PubMedCrossRefGoogle Scholar
  67. Thomas-Tikhonenko, A., I. Viard-Leveugle, M. Dews, P. Wehrli, C. Sevignani, D. Yu, S. Ricci, W. el-Deiry, B. Aronow, G. Kaya, J. H. Saurat, and L. E. French (2004) Myc-transformed epithelial cells down-regulate clusterin, which inhibits their growth in vitro and carcinogenesis in vivo. Cancer Res 64 (9):3126–36.PubMedCrossRefGoogle Scholar
  68. Tsujii, M., S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, and R. N. DuBois (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells [published erratum appears in Cell 1998 Jul 24;94(2):following 271]. Cell 93 (5):705–16.PubMedCrossRefGoogle Scholar
  69. Vasen, H. F., N. A. Gruis, R. R. Frants, P. A. van Der Velden, E. T. Hille, and W. Bergman (2000) Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer 87 (6):809–11.PubMedCrossRefGoogle Scholar
  70. Ventura, A., D. G. Kirsch, M. E. McLaughlin, D. A. Tuveson, J. Grimm, L. Lintault, J. Newman, E. E. Reczek, R. Weissleder, and T. Jacks (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445 (7128):661–5.PubMedCrossRefGoogle Scholar
  71. Wang, X. Q., B. G. Gabrielli, A. Milligan, J. L. Dickinson, T. M. Antalis, and K. A. Ellem (1996) Accumulation of p16CDKN2A in response to ultraviolet irradiation correlates with late S-G(2)-phase cell cycle delay. Cancer Res 56 (11):2510–14.PubMedGoogle Scholar
  72. Wang, Q. S., A. Papanikolaou, P. R. Nambiar, and D. W. Rosenberg (2000) Differential expression of p16(INK4a) in azoxymethane-induced mouse colon tumorigenesis. Mol Carcinog 28 (3):139–47.PubMedCrossRefGoogle Scholar
  73. Wang, W., J. Wu, Z. Zhang, and T. Tong (2001) Characterization of regulatory elements on the promoter region of p16(INK4a) that contribute to overexpression of p16 in senescent fibroblasts. J Biol Chem 276 (52):48655–61.PubMedCrossRefGoogle Scholar
  74. Weber, J. D., J. R. Jeffers, J. E. Rehg, D. H. Randle, G. Lozano, M. F. Roussel, C. J. Sherr, and G. P. Zambetti (2000) p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14 (18):2358–65.PubMedCrossRefGoogle Scholar
  75. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–30.PubMedCrossRefGoogle Scholar
  76. Wong, M. P., N. Cheung, S. T. Yuen, S. Y. Leung, and L. P. Chung (1999) Vascular endothelial growth factor is up-regulated in the early pre- malignant stage of colorectal tumour progression. Int J Cancer 81 (6):845–50.PubMedCrossRefGoogle Scholar
  77. Wu, J., L. Xue, M. Weng, Y. Sun, Z. Zhang, W. Wang, and T. Tong (2007) Sp1 is essential for p16 expression in human diploid fibroblasts during senescence. PLoS ONE 2 (1):e164.PubMedCrossRefGoogle Scholar
  78. Xue, L., J. Wu, W. Zheng, P. Wang, J. Li, Z. Zhang, and T. Tong (2004) Sp1 is involved in the transcriptional activation of p16(INK4) by p21(Waf1) in HeLa cells. FEBS Lett 564 (1-2):199–204.PubMedCrossRefGoogle Scholar
  79. Xue, W., L. Zender, C. Miething, R. A. Dickins, E. Hernando, V. Krizhanovsky, C. Cordon-Cardo, and S. W. Lowe (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445 (7128):656–60.PubMedCrossRefGoogle Scholar
  80. Zhang, Y., Y. Xiong, and W. G. Yarbrough (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92 (6):725–34.PubMedCrossRefGoogle Scholar
  81. Zindy, F., D. E. Quelle, M. F. Roussel, and C. J. Sherr (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15 (2):203–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MedicineFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations