Advertisement

TheWilson–Devinney Program: Extensions and Applications

  • Josef Kallrath
  • Eugene F. Milone
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Because the Wilson–Devinney program is the most widely used of all the light curve modeling tools, it is appropriate to describe its features, capabilities, and continuing development in some detail. The WD program itself has seen continual improvements, and the current version (briefly summarized in Chap. 6) with its powerful features provides the opportunity to extract a maximum of information from a variety of observational data. As a side-effect, publications on the WD model and on the WD program1 have stimulated the development of new programs, which in their kernel use the WD program. Several such programs with new innovative features or added functionality now coexist with the WD program. Some of these features were developed independently in several programs, including WD.

Keywords

Radial Velocity Light Curve Light Curf Globular Cluster Binary Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, J.: 1991, Accurate Properties of Normal Stars: Determination and Applications, PhD Dissertation, University of Copenhagen, Copenhagen University ObservatoryGoogle Scholar
  2. Andersen, J., Clausen, J. V., Gustafsson, B., Nordström, B.,& Vandenberg, D. A.: 1988, Absolute Dimensions of Eclipsing Binaries. XIII. AI Phoenicis: A Case Study in Stellar Evolution, A&A 196, 128–140ADSGoogle Scholar
  3. Avni, Y.: 1976, The Eclipse Duration of the X-Ray Pulsar 3U 0900-40, ApJ 209, 574–577CrossRefADSGoogle Scholar
  4. Bergbusch, P. A. & Vandenberg, D. A.: 1992, Oxygen-Enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions, ApJ Suppl. 81, 163–220CrossRefADSGoogle Scholar
  5. Bergbusch, P. A. & VandenBerg, D. A.: 2001, Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. III. Isochrones and Isochrone Population Functions, ApJ 556, 322–339CrossRefADSGoogle Scholar
  6. Cudworth, K. M.: 1985, Photometry, Proper Motions, and Membership in the Globular Cluster M71, AJ 90, 65–73CrossRefADSGoogle Scholar
  7. Elias, N. M., Wilson, R. E., Olson, E. C., Aufdenberg, J. P., Guinan, E. F., Gudel, M., Van Hamme, W., & Stevens, H. L.: 1997, New Perspectives on AX Monocerotis, ApJ 484, 394–411CrossRefADSGoogle Scholar
  8. Gilliland, R. L., Brown, T. M., Guhathakurta, P., Sarajedini, A., Milone, E. F., Albrow, M. D., Baliber, N. R., Bruntt, H., Burrows, A., Charbonneau, D., Choi, P., Cochran, W. D., Edmonds, P. D., Frandsen, S., Howell, J. H., Lin, D. N. C., Marcy, G. W., Mayor, M., Naef, D., Sigurdsson, S., Stagg, C. R., Vandenberg, D. A., Vogt, S. S., & Williams, M. D.: 2000, A Lack of Planets in 47 Tucanae from a Hubble Space Telescope Search, ApJ 545, L47–L51CrossRefADSGoogle Scholar
  9. Hrivnak, B. J. & Milone, E. F.: 1984, Observations, Analyses, and Absolute Parameters of the Evolved Binary AI Phoenicis, ApJ 282, 748–757CrossRefADSGoogle Scholar
  10. Imbert, M.: 1979, Orbite Spectroscopique et Dimensions de la Binaire à Éclipse AI Phe, A&A 36, 453–456ADSGoogle Scholar
  11. Kallrath, J.: 1987, Analyse von Lichtkurven enger Doppelsterne, Diploma thesis, Rheinische Friedrich-Wilhelms Universität Bonn, Sternwarte der Universität BonnGoogle Scholar
  12. Kallrath, J.: 1993, Gradient Free Determination of Eclipsing Binary Light Curve Parameters – Derivation of Spot Parameters Using the Simplex Algorithm, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 39–51, Springer, New YorkGoogle Scholar
  13. Kallrath, J. & Kämper, B.-C.: 1992, Another Look at the Early-Type Eclipsing Binary BF Aurigae, A&A 265, 613–625ADSGoogle Scholar
  14. Kallrath, J. & Linnell, A. P.: 1987, A New Method to Optimize Parameters in Solutions of Eclipsing Binary Light Curves, Astrophys. J. 313, 346–357CrossRefADSGoogle Scholar
  15. Kallrath, J., Milone, E. F., & Stagg, C. R.: 1992, Modeling of the Eclipsing Binaries in the Globular Cluster NGC 5466, ApJ 389, 590–601CrossRefADSGoogle Scholar
  16. Kallrath, J., Milone, E. F., Terrell, D., & Young, A. T.: 1998, Recent Improvements to a Version of the Wilson-Devinney Program, Astrophys. J. 508, 308–313CrossRefADSGoogle Scholar
  17. Kjeldseth-Moe, O. & Milone, E. F.: 1978, Limb Darkening 1945-3245 Å for the Quiet Sun from Skylab Data, ApJ 226, 301–314CrossRefADSGoogle Scholar
  18. Kurpinska–Winiarska, M., Oblak, E., Winiarski, M., & Kundera, T.: 2000, Observations of Two HIPPARCOS Eclipsing Variables, Information Bulletin on Variable Stars 4823, 1–3ADSGoogle Scholar
  19. Kurucz, R. L.: 1979, Model Atmospheres for G, F, A, B, and O Stars, ApJ Suppl. 40, 1–340CrossRefADSGoogle Scholar
  20. Kurucz, R. L.: 1993, New Atmospheres for Modelling Binaries and Disks, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 93–102, Springer, New YorkGoogle Scholar
  21. Linnell, A. P.: 1991, A Light Synthesis Study of W Ursae Majoris, ApJ 374, 307–318CrossRefADSGoogle Scholar
  22. Mateo, M., Harris, H. C., Nemec, J., & Olszewski, E. W.: 1990, Blue Stragglers as Remnants of Stellar Mergers: The Discovery of Short-Period Eclipsing Binaries in the Globular Cluster NGC 5466, AJ 100, 469–484CrossRefADSGoogle Scholar
  23. Mateo, M. & Yan, L.: 1996, Errata: Primordial Main Sequence Binary Stars in the Globular Cluster M71, AJ 111, 567CrossRefADSGoogle Scholar
  24. McVean, J. R., Milone, E. F., Mateo, M., & Yan, L.: 1997, Analyses of the Light Curves of the Eclipsing Binaries in the Globular Cluster M71, ApJ 481, 782–794CrossRefADSGoogle Scholar
  25. Milone, E. F. (ed.): 1993, Light Curve Modeling of Eclipsing Binary Stars, Springer, New YorkGoogle Scholar
  26. Milone, E. F. & Kallrath, J.: 2008, Tools of the Trade and the Products they Produce: Modeling of Eclipsing Binary Observables, in E. F. Milone, D. A. Leahy, & D. W. Hobill (eds.), Short-Period Binary Stars: Observations, Analyses, and Results, Vol. 352 of Astrophysics and Space Science Library, pp. 191–214, Springer, Dordrecht, The NetherlandsGoogle Scholar
  27. Milone, E. F. & Mermilliod, J.-C. (eds.): 1996, The Origins, Evolution, and Destinies of Binaries in Clusters, No. 90 in PASP Conference Series, San Francisco, Astronomical Society of the PacificGoogle Scholar
  28. Milone, E. F. & Terrell, D.: 1996, Analysis of the Contact System H235 in the Intermediate-Age Open Cluster NGC 752, in E. F. Milone & J.-C. Mermilliod (eds.), The Origins, Evolution, and Destinies of Binary Stars in Clusters, pp. 283–285, A.S.P. Conference Series, Provo, UTGoogle Scholar
  29. Milone, E. F., Stagg, C. R., & Kallrath, J.: 1992a, The Eclipsing Binaries in NGC 5466 and Implications for Close Binary Evolution, in Y. Kondo (ed.), Evolutionary Processes in Interacting Binary Stars, pp. 483–486, IAU, The NetherlandsGoogle Scholar
  30. Milone, E. F., Stagg, C. R., & Kurucz, R. L.: 1992b, The Eclipsing Binary AI Phoenicis: New Results Based on an Improved Light Curve Analysis Program, ApJ Suppl. 79, 123–137Google Scholar
  31. Milone, E. F., Wilson, R. E., & Hrivnak, B. J.: 1987, RW Comae Berencis. III. Light Curve Solution and Absolute Parameters, ApJ 319, 325–333CrossRefADSGoogle Scholar
  32. Milone, E. F., Groisman, G., Fry, D. J. I. F., & Bradstreet, H.: 1991, Analysis and Solution of the Light and Radial Velocity Curves of the Contact Binary TY Bootis, ApJ 370, 677–692CrossRefADSGoogle Scholar
  33. Milone, E. F., Kallrath, J., Stagg, C. R., & Williams, M. D.: 2004, The Modeling of Binaries in Globular Clusters, Revista Mexicana AA (SC) 21, 109–115Google Scholar
  34. Milone, E. F., Munari, U., Marrese, P. M., Williams, M. D., Zwitter, T., Kallrath, J., & Tomov, T.: 2005, Evaluating GAIA performance on eclipsing binaries: IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra, Astronomy and Astropyhsics 441, 605–613CrossRefADSGoogle Scholar
  35. Milone, E. F., Stagg, C. R., Sugars, B. A., McVean, J. R., Schiller, S. J., Kallrath, J., & Bradstreet, D. H.: 1995, Observations and Analysis of the Contact Binary H235 in the Open Cluster NGC 752, AJ 109, 359–377CrossRefADSGoogle Scholar
  36. Mukherjee, J. D., Peters, G. J., & Wilson, R. E.: 1996, Rotation of Algol Binaries – A Line Profile Model Applied to Observations, MNRAS 283, 613–625ADSGoogle Scholar
  37. Nelson, R. H., Milone, E. F., VanLeeuwen, J., Terrell, D., Penfold, J. E., & Kallrath, J.: 1995, Observations and Analysis of the Field Contact Binary V728 Herculis, AJ 110, 2400–2407CrossRefADSGoogle Scholar
  38. Nemec, J. M. & Harris, H. C.: 1987, Blue Straggler Stars in the Globular Cluster NGC 5466, ApJ 316, 172–188CrossRefADSGoogle Scholar
  39. Ögelman, H., Beuermann, K. P., Kanbach, G., Mayer-Hasselwander, H. A., Capozzi, D., Fiordilino, E., & Molteni, D.: 1977, Increase in the Pulsational Period of 3U0900-40, A&A 58, 385–388ADSGoogle Scholar
  40. Petro, L. D. & Hiltner, W. A.: 1974, Optical Observations of HD 77581 and a Model for the System HD 77581-2U 0900-40, ApJ 190, 661–666CrossRefADSGoogle Scholar
  41. Prša, A. & Zwitter, T.: 2005b, A Computational Guide to Physics of Eclipsing Binaries. I. Demonstrations and Perspectives, ApJ 628, 426–438Google Scholar
  42. Rappaport, S., Joss, P. C., & Stothers, R.: 1980, The Apsidal Motion Test in 4U 0900-40, ApJ 235, 570–575CrossRefADSGoogle Scholar
  43. Rasio, F. A.: 1995, The Minimum Ratio of W Ursae Majoris Binaries, ApJ 444, L41–L43CrossRefADSGoogle Scholar
  44. Rasio, F. A. & Shapiro, S.: 1994, Hydrodynamics of Binary Coalescence. I. Polytropes with Stiff Equations of State, ApJ 432, 242–261CrossRefADSGoogle Scholar
  45. Rasio, F. A. & Shapiro, S.: 1995, Hydrodynamics of Binary Coalescence. I. Polytropes with Γ = 5/3, ApJ 438, 887–903CrossRefADSGoogle Scholar
  46. Reipurth, B.: 1978, Photometry of AI Phe, Inform. Bull. Variable Stars 1419, 1–2ADSGoogle Scholar
  47. Stagg, C. R. & Milone, E. F.: 1993, Improvements to the Wilson–Devinney Code on Computer Platforms at the University of Calgary, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 75–92, Springer, New YorkGoogle Scholar
  48. Stickland, D., Lloyd, C., & Radziun-Woodham, A.: 1997, The Orbit of the Supergiant of Vela-X1 derived from IUE Radial Velocities, MNRAS 286, L21–L24ADSGoogle Scholar
  49. Strohmeier, W.: 1972, Three New Bright Eclipsing Binaries, Inform. Bull. Variable Stars 665, 1–3ADSGoogle Scholar
  50. Terrell, D.: 1994, Circumstellar Hydrodynamics and Spectral Radiation in Algols, PhD thesis, Department of Astronomy, University of Florida, Gainesville, FLGoogle Scholar
  51. Van der Klis, J. & Bonnet-Bidaud, J. M.: 1984, The Orbital Parameters and the X-Ray Pulsation of Vela X-1 (4U 0900-40), A&A 135, 155–170ADSGoogle Scholar
  52. Van Genderen, A. M.: 1981, A Discussion on VBLUW Photometry of the X-Ray Binary HD 77581 (=Vela X-1 =3 U 0900-40) and on the Overluminosity of the Primaries in X-Ray Binaries. The Optical Micro Variability of the Hot Supergiant Primaries HD 77581 and HD 153919, A&A 96, 82–90ADSGoogle Scholar
  53. Van Hamme,W.: 1993, New Limb-Darkening Coefficients for Modeling Binary Star Light Curves, AJ 106, 2096–2117CrossRefADSGoogle Scholar
  54. Van Hamme, W. & Wilson, R. E.: 2003, Stellar Atmospheres in Eclipsing Binary Models, in U. Munari (ed.), GAIA Spectroscopy: Science and Technology, Vol. 298 of Astronomical Society of the Pacific Conference Series, pp. 323–328, San FranciscoGoogle Scholar
  55. Van Kerkwijk, M. H., Van Paradijs, J., Zuiderwijk, E. J., Hammerschlag-Hensberge, G., Kaper, L., & Sterken, C.: 1995, Spectroscopy of HD77581 and the Mass of Vela X-1, A&A 303, 483–496Google Scholar
  56. Van Paradijs, J., Zuiderwijk, E. J., Takens, R. J., Hammerschlag-Hensberge, G., Van den Heuvel, E. P. J., & Lorre, C. D.: 1977, The Spectroscopic Orbit and the Masses of the Components of the Binary X-Ray Source 3U0900-40/HD 77581, A&A Suppl. 30, 195–211ADSGoogle Scholar
  57. VandenBerg, D. A.: 2000, Models for Old, Metal-Poor Stars with Enhanced α-Element Abundances. II. Their Implications for the Ages of the Galaxy’s Globular Clusters and Field Halo Stars, ApJ Suppl. 129, 315–352CrossRefADSGoogle Scholar
  58. Vandenberg, D. A. & Hrivnak, B. J.: 1985, The Age and Helium Content of the Eclipsing Binary AI Phoenicis, ApJ 291, 270CrossRefADSGoogle Scholar
  59. VandenBerg, D. A., Richard, O., Michaud, G., & Richer, J.: 2002, Models of Metal-poor Stars with Gravitational Settling and Radiative ccelerations. II. The Age of the Oldest Stars, ApJ 571, 487–500CrossRefADSGoogle Scholar
  60. Wade, R. A. & Rucinski, S. M.: 1985, Linear and Quadratic Limb-darkening Coefficients for a Large Grid of LTE Model Atmospheres, A&A Suppl. 60, 471–484ADSGoogle Scholar
  61. Watson, M. G. & Griffiths, R. E.: 1977, Ariel V Sky Survey Instrument: Extended Observations of 3U 0900-40, MNRAS 178, 513–524ADSGoogle Scholar
  62. Wilson, R. E.: 2005, EB Light Curve Models – What’s Next? Ap. Sp. Sci. 296, 197–207CrossRefADSGoogle Scholar
  63. Wilson, R. E.: 2008, Eclipsing Binary Solutions in Physical Units and Direct Distance Estimation, ApJ 672, 575–589CrossRefADSGoogle Scholar
  64. Wilson, R. E.: 2009, Modeling Intrinsic Variable Stars into Eclipsing Binary Programs, private communicationGoogle Scholar
  65. Wilson, R. E. & Devinney, E. J.: 1971, Realization of Accurate Close-Binary Light Curves: Application to MR Cygni, ApJ 166, 605–619CrossRefADSGoogle Scholar
  66. Wilson, R. E. & Terrell, D.: 1994, Sub-Synchronous Rotation and Tidal Lag in HD 77581/Vela X-1, in S. S. Holt & C. S. Day (eds.), The Evolution of X-Ray Binaries, No. 308 in AIP Conference Proceedings, pp. 483–486, AIP, American Institute of Physics, Woodbury, NYGoogle Scholar
  67. Wilson, R. E. & Terrell, D.: 1998, X-Ray Binary Unified Analysis: Pulse/RV Application to Vela X1/GP Velorum, MNRAS 296, 33–43CrossRefADSGoogle Scholar
  68. Yan, L. & Mateo, M.: 1994, Primordial Main Sequence Binary Stars in the Globular Cluster M71, AJ 108, 1810–1827CrossRefADSGoogle Scholar
  69. Young, A. T., Milone, E. F., & Stagg, C. R.: 1994, On Improving IR Photometric Passbands, A&A Suppl. 105, 259–279ADSGoogle Scholar
  70. Zuiderwijk, E. J.: 1995, The Rotation Period of HD 77581 (Vela X-1), A&A 299, 79–83ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations