Light Curve Models and Software

  • Josef Kallrath
  • Eugene F. Milone
Part of the Astronomy and Astrophysics Library book series (AAL)


This chapter describes the characteristics and details of implementation for the major light curve models and programs. The purpose is to provide an overview of existing capabilities


Light Curve Light Curf Binary Star Stellar Atmosphere Peculiar Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, J. & Grønbech, B.: 1975, The Close O-type Eclipsing Binary TU Muscae, A&A 45, 107–115ADSGoogle Scholar
  2. Antokhina, Éh. A. & Cherepashchuk, A. M.: 1987, SS 433: Parameters of the Eclipsing System with a Thick Precessing Accretion Disk, Sov. Astron. 31, 295–307ADSGoogle Scholar
  3. Antokhina, Éh. A., Pavlenko, E. P., Cherepashchuk, A. M., & Shugarov, S. Y.: 1993, The Best Candidate for a Black Hole – X-Ray Nova V404 Cygni: the Light Curve and Parameters, Astron. Rep. 37, 407–411ADSGoogle Scholar
  4. Antokhina, Éh. A., Seyfina, E. V., & Cherepashchuk, A. M.: 1992, Analysis of X-Ray Eclipses in SS 433, Sov. Astron. 36, 143–146ADSGoogle Scholar
  5. Bevington, P. R.: 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New YorkGoogle Scholar
  6. Binnendijk, L.: 1960, Properties of Double Stars, University of Pennsylvannia Press, Philadelphia, PAGoogle Scholar
  7. Binnendijk, L.: 1974, The Intrinsic Light Variations in Very Close Eclipsing Binary Systems, Vistas 16, 61–83CrossRefGoogle Scholar
  8. Binnendijk, L.: 1977, Synthetic Light Curves for Binaries, Vistas 21, 359–391CrossRefGoogle Scholar
  9. Budding, E.: 1993, An Introduction to Astronomical Photometry, Cambridge University Press, Cambridge, UKGoogle Scholar
  10. Budding, E. & Zeilik, M.: 1987, An Analysis of the Light Curves of Short-Period RS CVn stars: Starspots and Fundamental Properties, ApJ 319, 827–835CrossRefADSGoogle Scholar
  11. Buser, R.: 1978, A Systematic Investigation of Multicolor Photometric Systems, A&A 62, 411–424ADSGoogle Scholar
  12. Carbon, D. F. & Gingerich, O.: 1969, A Grid of Model Stellar Atmospheres from 4000 to 50,000 K, in O. Gingerich (ed.), Theory and Observation of Normal Stellar Atmospheres, Proc. of the Third Harvard-Smithonian Conference on Stellar Atmospheres, pp. 377–400, MIT University Press, Cambridge, MAGoogle Scholar
  13. Chandrasekhar, S.: 1950, Radiative Transfer, Oxford University Press, Oxford, UKMATHGoogle Scholar
  14. Cherepashchuk, A. M.: 1966, Determination of the Elements of Eclipsing Systems Containing a Component with an Extended Atmosphere, Sov. Astron. 10 (3), 227–252Google Scholar
  15. Cherepashchuk, A. M.: 1971, Eclipses of Spherical Stars (Arbitrary Limb Darkening Law), in V. P. Tsesevich (ed.), Eclipsing Variable Stars, pp. 225–269, Nauka, Moscow, (English translation, 1973, New York)Google Scholar
  16. Cherepashchuk, A. M.: 1973, The Direct Method of Light Curve Solution of the Eclipsing Binary System with an Extended Atmosphere. Calculation and Application of Weights. Computer Programmes, Peremennye Zvezdy (Variable Stars) 19, 227–252ADSGoogle Scholar
  17. Cherepashchuk, A. M.: 1975, Photometric Elements of the Eclipsing Binary V444 Cygni, and the Nature of the Wolf–Rayet Component, Sov. Astron. 19(1), 47–57ADSGoogle Scholar
  18. Cherepashchuk, A. M.: 2005, Atmospheric Eclipses in WR–O Binaries: From Kopal and Shapley to Present Days, Ap. Sp. Sci. 296, 55–65CrossRefADSGoogle Scholar
  19. Cherepashchuk, A. M., Goncharsky, A. V., & Jagola, A. G.: 1973, The Algorithm and Computer Programme for Light Curve Solution of an Eclipsing Binary System Containing the Component with an Extended Atmosphere, Peremennye Zvezdy (Variable Stars) 18, 535–569ADSGoogle Scholar
  20. Cherepashchuk, A. M., Goncharsky, A. V., & Jagola, A. G.: 1975, A Class of Monotonic Functions as a Solution of Eclipsing Binary Light Curves, Sov. Astron. 18(4), 460–463ADSGoogle Scholar
  21. Cherepashchuk, A. M., Goncharsky, A. V., & Yagola, A. G.: 1967, An Interpretation of Eclipsing Systems as an Inverse Problem of Photometry, Sov. Astron. 11(6), 990–999ADSGoogle Scholar
  22. Cherepashchuk, A. M. & Khaliullin, K. F.: 1976, Nature of the Wolf–Rayet Component of the Binary System V444 Cygni, Sov. Astron. 19(6), 727–733ADSGoogle Scholar
  23. Crampton, D. & Hutchings, J. B.: 1981, The SS 433 Binary System, ApJ 251, 604–610CrossRefADSGoogle Scholar
  24. Crawford, J.: 1992, A Photometric and Spectroscopic Analysis of the Chromospherically Active Binary RT Lacertae, Dissertation, San Diego State University, Department of AstronomyGoogle Scholar
  25. Davidge, T. J. & Milone, E. F.: 1984, A Study of the O’Connell Effect in the Light Curves of Eclipsing Binaries, ApJ Suppl. 55, 571–584CrossRefADSGoogle Scholar
  26. Devor, J.: 2005, Solutions for 10,000 Eclipsing Binaries in the Bulge Fields of OGLE II Using DEBiL, ApJ 628, 411–425CrossRefADSGoogle Scholar
  27. Devor, J. & Charbonneau, D.: 2006a, MECI: A Method for Eclipsing Component Identification, ApJ 653, 647–656Google Scholar
  28. D’Odorico, S., Oosterloo, T., Zwitter, T., & Calvani, M.: 1991, Evidence that the Compact Object in SS 433 is a Neutron Star and not a Black Hole, Nature 353, 329–331CrossRefADSGoogle Scholar
  29. Eaton, J. A. & Hall, D. S.: 1979, Starspots as the Cause of the Intrinsic Light Variations in RS Canum Venaticorum Type Stars, ApJ 227, 907–922CrossRefADSGoogle Scholar
  30. Eggleton, P. P. & Kiseleva-Eggleton, L.: 2002, The Evolution of Cool Algols, ApJ 575, 461–473CrossRefADSGoogle Scholar
  31. Etzel, P. B.: 1981, A Simple Synthesis Method for Solving the Elements of Well-Detached Eclipsing Systems, in E. B. Carling & Z. Kopal (eds.), Photometric and Spectroscopic Binary Systems, pp. 111–120, D. Reidel, Dordrecht, HollandGoogle Scholar
  32. Etzel, P. B.: 1993, Current Status of the EBOP Code, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 113–124, Springer, New YorkGoogle Scholar
  33. Fabrica, S. N. & Bychkova, L. V.: 1990, The Mass Function of SS 433, A&A Letters 240, L5–L7ADSGoogle Scholar
  34. Goncharsky, A. V., Cherepashchuk, A. M., & Yagola, A. G.: 1978, Numerical Methods for Solving Inverse Problems of Astrophysics, Nauka, Moscow (in Russian)Google Scholar
  35. Goncharsky, A. V., Cherepashchuk, A. M., & Yagola, A. G.: 1985, Ill-Posed Problems of Astrophysics, Nauka, Moscow (in Russian)Google Scholar
  36. Goncharsky, A. V., Romanov, S. Y., & Cherepashchuk, A. M.: 1991, Finite-Number Parametric Inverse Problems of Astrophysics, Moscow University Press, Moscow, Russia (in Russian)Google Scholar
  37. Hadrava, P.: 1997, FOTEL 3 – User’s Guide,Technical report, Astronomical Institute of the Academy of Sciences of the Czech Republic, 25165 Ondrejov, Czech RepublicGoogle Scholar
  38. Hadrava, P.: 2004, FOTEL 4 - User’s guide, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences 92, 1–14ADSGoogle Scholar
  39. Hendry, P. D. & Mochnacki, S. W.: 1992, The GDDSYN Light Curve Synthesis Method, ApJ 388, 603–613CrossRefADSGoogle Scholar
  40. Hendry, P. D., Mochnacki, S. W., & Cameron, A. C.: 1992, Photometric Imaging of VW Cephei, ApJ 399, 246–264CrossRefADSGoogle Scholar
  41. Hill, G.: 1979, Description of an Eclipsing Binary Light Curve Computer Code with Application to Y Sex and the WUMA Code of Rucinski, Publ. Dom. Astrophys. Obs. 15, 297–325ADSGoogle Scholar
  42. Hill, G., Fisher, W. A., & Holmgren, D.: 1990, Studies of Late-Type Binaries. IV. The Physical Parameters of ER Vulpeculae, A&A 238, 145–159ADSGoogle Scholar
  43. Hill, G. & Rucinski, S. M.: 1993, LIGHT2: A light-curve modeling program, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 135–150, Springer, New YorkGoogle Scholar
  44. Holmgren, D. E.: 1988, The Absolute Dimensions of Ten Eclipsing Binary Stars with Components of Early Spectral Type, PhD Dissertation, University of Victoria, Department of Physics and Astronomy, University of VictoriaGoogle Scholar
  45. Huenemoerder, D. P.: 1985, Hydrogen Alpha Observations of RS Canum Venaticorum Stars. IV. Gas Streams in RT Lacertae, AJ 90, 499–503CrossRefADSGoogle Scholar
  46. Huenemoerder, D. P.: 1988, Optical and Ultraviolet Activity in RT Lacertae in 1985 and 1986, PASP 100, 600–603CrossRefADSGoogle Scholar
  47. Huenemoerder, D. P. & Barden, S. C.: 1986a, Optical and UV Spectroscopy of the Peculiar RS CVn System, RT Lacertae, in M. Zeilik & D. M. Gibson (eds.), Cool Stars, Stellar Systems, and the Sun. Proc. 4th Cambridge Workshop, Santa Fe, pp. 199–201, Springer, New YorkGoogle Scholar
  48. Huenemoerder, D. P. & Barden, S. C.: 1986b, Optical and UV Spectroscopy of the Peculiar RS CVn System RT Lacertae, AJ 91, 583–589Google Scholar
  49. Hutchings, J. B.: 1968, Expanding Atmospheres in OB Supergiants. I., MNRAS 141, 219–249ADSGoogle Scholar
  50. Irwin, J.: 1962, Tables Facilitating the Least-Squares Solution of an Eclipsing Binary Light-Curve, ApJ 106, 380–426CrossRefMathSciNetADSGoogle Scholar
  51. Jurkevich, I.: 1970, Machine Solutions of Light Curves of Eclipsing Binary Systems, in A. Beer (ed.), The Henry Norris Russell Memorial Volume, Vol. 12 of Vistas, pp. 63–116, Pergamon Press, Oxford, UKGoogle Scholar
  52. Kopal, Z.: 1959, Close Binary Systems, Chapman & Hall, LondonGoogle Scholar
  53. Kopal, Z.: 1979, Language of the Stars, D. Reidel, Dordrecht, HollandGoogle Scholar
  54. Kopal, Z.: 1989, The Roche Problem, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  55. Kopal, Z.: 1990, Mathematical Theory of Stellar Eclipses, Kluwer Academic Publishers, Dordrecht, HollandMATHGoogle Scholar
  56. Kurucz, R. L.: 1979, Model Atmospheres for G, F, A, B, and O Stars, ApJ Suppl. 40, 1–340CrossRefADSGoogle Scholar
  57. Kurucz, R. L.: 1993, New Atmospheres for Modelling Binaries and Disks, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 93–102, Springer, New YorkGoogle Scholar
  58. Lanza, A. F., Catalano, S., Cutispoto, G., Pagano, I., & Rodonò, M.: 1998, Long-term Starspot Evolution, Activity Cycle and Orbital Period Variation of AR Lacertae, A&A 332, 541–560ADSGoogle Scholar
  59. Lanza, A. F., Catalano, S., Rodonò, M., İbanoğlu, C., Evren, S., Taş, G., Çak, Ö., & Devlen, A.: 2002, Long-term Starspot Evolution, Activity Cycle and Orbital Period Variation of RT Lacertae, A&A 386, 583–605CrossRefADSGoogle Scholar
  60. Linnell, A. P.: 1984, A Light Synthesis Program for Binary Stars, ApJ Suppl. 54, 17–31CrossRefADSGoogle Scholar
  61. Linnell, A. P.: 1989, A Light Synthesis Program for Binary Stars. III. Differential Corrections, ApJ 342, 449–462CrossRefADSGoogle Scholar
  62. Linnell, A. P.: 1991, A Light Synthesis Study of W Ursae Majoris, ApJ 374, 307–318CrossRefADSGoogle Scholar
  63. Linnell, A. P.: 1993, Light Synthesis Modeling of Close Binary Stars, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 103–111, Springer, New YorkGoogle Scholar
  64. Linnell, A. P., Etzel, P. B., Hubeny, I., & Olson, E. C.: 1998, A Photometric and Spectrophotometric of MR Cygni, ApJ 494, 773–782CrossRefADSGoogle Scholar
  65. Linnell, A. P. & Hubeny, I.: 1994, A Spectrum Synthesis Program for Binary Stars, ApJ 434, 738–746CrossRefADSGoogle Scholar
  66. Lucy, L. B.: 1968, The Light Curves of W Ursae Majoris, ApJ 153, 877–884CrossRefADSGoogle Scholar
  67. Marquardt, D. W.: 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math. 11, 431–441MATHCrossRefMathSciNetGoogle Scholar
  68. McNally, D. (ed.): 1991, Reports on Astronomy Symposium on the Theory of Computing, No. XXIA in Close Binary Stars, The Netherlands, IAUGoogle Scholar
  69. Milone, E. F.: 1976, Infrared Photometry of RT Lacertae, ApJ Suppl. 31 93–109CrossRefADSGoogle Scholar
  70. Milone, E. F.: 1977, MPreliminary Solution for RT Lacertae, AJ 82, 998–1007CrossRefADSGoogle Scholar
  71. Milone, E. F. (ed.): 1993, Light Curve Modeling of Eclipsing Binary Stars, Springer, New YorkGoogle Scholar
  72. Milone, E. F.: 2002, A Reprise of the Properties of the Exotic Eclipsing Binary RT Lacertae, in C. A. Tout & W. van Hamme (eds.), Exotic Stars as Challenges to Evolution, Vol. 279 of Astronomical Society of the Pacific Conference Series, pp. 65–71Google Scholar
  73. Mochnacki, S. W. & Doughty, N. A.: 1972a, A Model for the Totally Eclipsing W Ursae Majoris System AW UMa, MNRAS 156, 51–65Google Scholar
  74. Mochnacki, S. W. & Doughty, N. A.: 1972b, Models for Five W Ursae Majoris Systems, MNRAS 156, 243–252Google Scholar
  75. Nagy, T. E.: 1975, The Binary System V566 Oph Revisited, Bull. Amer. Astr. Soc. 7, 533ADSGoogle Scholar
  76. Nelson, B. & Davis, W. D.: 1972, Eclipsing-Binary Solutions by Sequential Optimization of the Parameters, ApJ 174, 617–628CrossRefADSGoogle Scholar
  77. Plavec, M. J.: 1980, IUE Observations of Long Period Eclipsing Binaries: A Study of Accretion onto Non-Degenerate Stars, in M. J. Plavec, D. M. Popper, & R. K. Ulrich (eds.),Close Binary Stars: Observations and Interpretation, pp. 251–261, D. Reidel, Dordrecht, HollandGoogle Scholar
  78. Popper, D. M.: 1991, Orbits of Close Binaries with CA II H and K in Emission. IV – Three Systems with Mass Ratios far from Unity, AJ 101, 220–229CrossRefADSGoogle Scholar
  79. Popper, D. M.: 1992, The Cool ALGOLS, in Y. Kondo, R. Sistero, & R. S. Polidan (eds.), Evolutionary Processes in Interacting Binary Stars, Vol. 151 of IAU Symposium, pp. 395–398Google Scholar
  80. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T.: 1992, Numerical Recipes – The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 2nd editionGoogle Scholar
  81. Proctor, D. D. & Linnell, A. P.: 1972, Computer Solution of Eclipsing-Binary Light Curves by the Method of Differential Corrections, ApJ Suppl. 24, 449–477CrossRefADSGoogle Scholar
  82. Rodonò, M., Lanza, A. F., & Catalano, S.: 1995, Starspot Evolution, Activity Cycle and rbital Period Variation of the Prototype Active Binary RS Canum Venaticorum., A&A 301, 75–88ADSGoogle Scholar
  83. Russell, H. N.: 1912a, On the Determination of the Orbital Elements of Eclipsing Variable Stars. I, ApJ 35, 315–340Google Scholar
  84. Russell, H. N.: 1912b, On the Determination of the Orbital Elements of Eclipsing Variable Stars. II, ApJ 36, 54–74Google Scholar
  85. Russell, H. N. & Merrill, J. E.: 1952, The Determination of the Elements of Eclipsing Binary Stars, Princeton. Obs. Contr. 26, 1–96ADSGoogle Scholar
  86. Russell, H. N. & Shapley, H.: 1912a, On Darkening at the Limb in Eclipsing Variables. I, ApJ 36, 239–254Google Scholar
  87. Russell, H. N. & Shapley, H.: 1912b, On Darkening at the Limb in Eclipsing Variables. II, ApJ 36, 385–408Google Scholar
  88. Southworth, J.: 2008, Homogeneous Studies of Transiting Extrasolar Planets -I. Light-curve Analyses, MNRAS 386, 1644–1666CrossRefADSGoogle Scholar
  89. Southworth, J., Bruntt, H., & Buzasi, D. L.: 2007a, Eclipsing Binaries Observed with the WIRE Satellite. II. β Aurigae and Non-linear Limb Darkening in Light Curves, A&A 467, 1215–1226Google Scholar
  90. Southworth, J., Maxted, P. F. L., & Smalley, B.: 2004a, Eclipsing binaries in Open Clusters - I. V615 Per and V618 Per in h Persei, MNRAS 349, 547–559Google Scholar
  91. Southworth, J., Maxted, P. F. L., & Smalley, B.: 2004b, Eclipsing Binaries in Open Clusters - II. 453 Cyg in NGC 6871, MNRAS 351, 1277–1289Google Scholar
  92. Southworth, J., Smalley, B., Maxted, P. F. L., & Etzel, P. B.: 2004c, Accurate Fundamental Parameters of Eclipsing Binary Stars, in J. Zverko, J. Ziznovsky, S. J. Adelman, & W. W. Weiss (eds.), IAU Symposium, pp. 548–561Google Scholar
  93. Southworth, J., Wheatley, P. J., & Sams, G.: 2007b, A Method for the Direct Determination of the Surface Gravities of Transiting Extrasolar Planets, MNRAS 379, L11–L15Google Scholar
  94. Tamuz, O., Mazeh, T., & North, P.: 2006, Automated analysis of eclipsing binary light curves – I. EBAS – a new Eclipsing Binary Automated Solver with EBOP, MNRAS 367,521–1530CrossRefADSGoogle Scholar
  95. Tikhonov, A. N.: 1963a, Regularization of Incorrectly Posed Problems, Dokl. Akad. Nauk USSR 153, 49–52Google Scholar
  96. Tikhonov, A. N.: 1963b, Solution of Incorrectly Formulated Problems and the Regularization Method, Dokl. Akad. Nauk USSR 151, 501–504Google Scholar
  97. Tikhonov, A. N. & Arsenin, V. Y. (eds.): 1979, Methods for Solving Ill-Posed Problems, Nauka, MoscowGoogle Scholar
  98. Tsesevich, V. P. (ed.): 1973, Eclipsing Variable Stars, A Halsted Press Book, Wiley, New YorkGoogle Scholar
  99. Van Hamme,W.: 1993, New Limb-Darkening Coefficients for Modeling Binary Star Light Curves, AJ 106, 2096–2117CrossRefADSGoogle Scholar
  100. Van Hamme, W. & Wilson, R. E.: 2003, Stellar Atmospheres in Eclipsing Binary Models, in U. Munari (ed.), GAIA Spectroscopy: Science and Technology, Vol. 298 of Astronomical Society of the Pacific Conference Series, pp. 323–328, San FranciscoGoogle Scholar
  101. Van Hamme, W. & Wilson, R. E.: 2007, Third-Body Parameters from Whole Light and Velocity Curves, ApJ 661, 1129–1151CrossRefADSGoogle Scholar
  102. Wade, R. A. & Rucinski, S. M.: 1985, Linear and Quadratic Limb-darkening Coefficients for a Large Grid of LTE Model Atmospheres, A&A Suppl. 60, 471–484ADSGoogle Scholar
  103. Wehrse, R.: 1987, Theory of Circumstellar Envelopes, in I. Appenzeller & C. Jordan (eds.), Circumstellar Matter, IAU Symposium 122, pp. 255–266, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  104. Wilson, R. E.: 1979, Eccentric Orbit Generalization and Simultaneous Solution of Binary Star Light and Velocity Curves, ApJ 234, 1054–1066CrossRefADSGoogle Scholar
  105. Wilson, R. E.: 1989, The Relation of Algols and W Serpentis Stars, Space Sci. Rev. 50, 191–203CrossRefADSGoogle Scholar
  106. Wilson, R. E.: 1990, Accuracy and Efficiency in the Binary Star Reflection Effect, ApJ 356, 613–622CrossRefADSGoogle Scholar
  107. Wilson, R. E.: 1993, Computation Methods and Organization for Close Binary Observables, in J. C. Leung & I.-S. Nha (eds.), New Frontiers in Binary Star Research, Vol. 38 of ASP Conference Series, pp. 91–126, Astronomical Society of the Pacific, San Francisco, CAGoogle Scholar
  108. Wilson, R. E.: 1994, Binary-Star Light-Curve Models, PASP 106, 921–941Google Scholar
  109. Wilson, R. E.: 1998, Computing Binary Star Observables (Reference Manual to the Wilson–Devinney Programm, Department of Astronomy, University of Florida, Gainesville, FL, 1998 editionGoogle Scholar
  110. Wilson, R. E.: 2007, Close Binary Star Observables: Modeling Innovations 2003-06, in W. I. Hartkopf, E. F. Guinan, & P. Harmanec (eds.), Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, No. 240 in Proceedings IAU Symposium, pp. 188–197, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  111. Wilson, R. E.: 2008, Eclipsing Binary Solutions in Physical Units and Direct Distance Estimation, ApJ 672, 575–589CrossRefADSGoogle Scholar
  112. Wilson, R. E. & Devinney, E. J.: 1971, Realization of Accurate Close-Binary Light Curves: Application to MR Cygni, ApJ 166, 605–619CrossRefADSGoogle Scholar
  113. Wilson, R. E. & Devinney, E. J.: 1973, Fundamental Data for Contact Binaries: RZ Comae Berenices, RZ Tauri, and AW Ursae Majoris, ApJ 182, 539–547CrossRefADSGoogle Scholar
  114. Wolf, B.: 1987, Some Observations Relevant to the Theory of Expending Envelopes, in I. Appenzeller & C. Jordan (eds.), Circumstellar Matter, IAU Symposium 122, pp. 409–425, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  115. Wood, D. B.: 1971, An Analytic Model of Eclipsing Binary Star Systems, AJ 76, 701–710CrossRefADSGoogle Scholar
  116. Wood, D. B.: 1972, A Computer Program for Modeling Non-Spherical Eclipsing Binary Star Systems, Technical Report X-110-72-473, GSFC, Greenbelt, MDGoogle Scholar
  117. Yamasaki, A.: 1981, Light Curve Analysis of Contact Binaries: Characteristic Quantities of the Light Curve, Ap. Sp. Sci. 77, 75–109CrossRefADSGoogle Scholar
  118. Yamasaki, A.: 1982, A Spot Model for VW Cephei, Ap. Sp. Sci. 85, 43–48CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations