Determination of Eclipsing Binary Parameters

  • Josef Kallrath
  • Eugene F. Milone
Part of the Astronomy and Astrophysics Library book series (AAL)


The determination or estimation of physical parameters from EB light curves and/or radial velocity curves is an inverse problem and can be formulated as a nonlinear least-squares problem. It is solved by optimizing the agreement between the calculated light and the observed light curve. The parameter vector x corresponding to minimum deviation is the system solution, and the calculated light curve produced from it is said to be the best fit to the data. A measure of the deviation is the weighted sum of the squared residuals.


Light Curve Light Curf Shot Noise Simplex Algorithm Binary Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, R. G.: 1964, The Binary Stars, Dover Publications, Philadelphia, PA, 3rd editionGoogle Scholar
  2. Alizamir, S., Rebennack, S., & Pardalos, P.M.: 2008, Improving the Neighborhood Selection Strategy in Simulated Annealing using the Optimal Stopping Problem, in C.M. Tan (ed.), Global Optimization: Focus on Simulated Annealing, Chap. 18, pp. 363–382, I-Tech Education and PublicationGoogle Scholar
  3. Baake, E. & Schlöder, J. P.: 1992, Modelling the Fast Fluorescence Rise of Photosynthesis, Bull. Math. Biol. 54, 999–1021MATHGoogle Scholar
  4. Barone, F., Maceroni, C., Milano, C., & Russo, G.: 1988, The Optimization of the Wilson–Devinney Method: An Application to CW Cas, A&A 197, 347–353ADSGoogle Scholar
  5. Bock, H. G.: 1981, Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics, in K. H. Ebert, P. Deuflhard, & W. Jäger (eds.), Modelling of Chemical Reaction Systems, Series in Chemical Physics, pp. 102–125, Springer, HeidelbergGoogle Scholar
  6. Bock, H. G.: 1987, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Preprint 142, Universität Heidelberg, SFB 123, Institut für Angewandte Mathematik, 69120 HeidelbergGoogle Scholar
  7. Bradstreet, D. H.: 1993, Binary Maker 2.0 – An Interactive Graphical Tool for Preliminary Light Curve Analysis, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 151–166, Springer, New YorkGoogle Scholar
  8. Bradstreet, D. H. and Steelman, D. P., 2004. Binary Maker 3.0. Contact software, Norristown, PA 19087Google Scholar
  9. Brandt, S.: 1976, Statistical and Computational Methods in Data Analysis, North-Holland, Amsterdam, 2nd editionGoogle Scholar
  10. Branham, R. L.: 1990, Scientific Data Analysis: An Introduction to Overdetermined Systems, Springer, New YorkMATHGoogle Scholar
  11. Code, A. D. & Liller, W. C.: 1962, Direct Recording of Stellar Spectra, in W. A. Hiltner (ed.), Astronomical Techniques, Vol. II of Stars and Stellar Systems, pp. 281–301, University of Chicago Press, Chicago, ILGoogle Scholar
  12. Dantzig, G. B.: 1951, Application of the Simplex Method to a Transportation Problem, in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, pp. 359–373, Wiley, New YorkGoogle Scholar
  13. Dennis, J. E. & Schnabel, R. B.: 1983, Numerical Methods for Unconstrained Optimisation and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  14. Deuflhard, P. & Apostolescu, V.: 1977, An Underrelaxed Gauss-Newton Method for Equality Constrained Nonlinear Least-Squares Problems, in J. Stoer (ed.), Proc. 8th IFIP Conf. Würzburg Symposium on the Theory of Computing, No. 23 in Springer Lecture Notes Control Inform Sci., Springer, HeidelbergGoogle Scholar
  15. Deuflhard, P. & Apostolescu, V.: 1980, A Study of the Gauss–Newton Method for the Solution of Nonlinear Least-Squares Problems, in J. Frehse, D. Pallaschke, & U. Trottenberg (eds.), Special Topics of Applied Mathematics, pp. 129–150, North-Holland, AmsterdamGoogle Scholar
  16. Djurasevic, G.: 1992, An Analysis of Active Close Binaries (CB) Based on Photometric Measurements. III. The Inverse-Problem Method – An Interpretation of CB Light Curves, Ap. Sp. Sci. 197, 17–34CrossRefADSGoogle Scholar
  17. Eggleton, P. P.: 1983, Approximations to the Radii of Roche Lobes, ApJ 268, 368–369CrossRefADSGoogle Scholar
  18. Eichhorn, H.: 1978, Least-Squares Adjustments with Probabilistic Constraints, MNRAS 182, 355–360MATHADSGoogle Scholar
  19. Eichhorn, H.: 1993, Generalized Least-Squares Adjustment, a Timely but Much Neglected Tool, CMDA 56, 337–351MATHCrossRefADSGoogle Scholar
  20. Eichhorn, H. & Standish, M.: 1981, Remarks on Nonstandard Least-Squares Problems, AJ 86, 156–159CrossRefMathSciNetADSGoogle Scholar
  21. Fletcher, R.: 1970, A New Approach to Variable Metric Algorithms, Comp. J. 13, 317–322MATHCrossRefGoogle Scholar
  22. Gauß, C. F.: 1809, Theoria Motus Corporum Coelestium in Sectionibus Conicus Solem Ambientium, F. Perthes and J. H. Besser, HamburgGoogle Scholar
  23. Hill, G.: 1979, Description of an Eclipsing Binary Light Curve Computer Code with Application to Y Sex and the WUMA Code of Rucinski, Publ. Dom. Astrophys. Obs. 15, 297–325ADSGoogle Scholar
  24. Jefferys, W. H.: 1980, On the Method of Least-Squares, AJ 85, 177–181CrossRefMathSciNetADSGoogle Scholar
  25. Jefferys, W. H.: 1981, On the Method of Least-Squares. II, AJ 86, 149–155CrossRefMathSciNetADSGoogle Scholar
  26. Kallrath, J.: 1993, Gradient Free Determination of Eclipsing Binary Light Curve Parameters – Derivation of Spot Parameters Using the Simplex Algorithm, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 39–51, Springer, New YorkGoogle Scholar
  27. Kallrath, J.: 1999, Least-Squares Methods for Models Including Ordinary and Partial Differential Equations, in R. Dvorak (ed.), Modern Astrometry and Astrodynamics, Österreichische Akademie der Wissenschaften, Vienna, AustriaGoogle Scholar
  28. Kallrath, J., Altstädt, V., Schlöder, J. P., & Bock, H. G.: 1999, Analysis of Crack Fatigue Growth Behaviour in Polymers and their Composites Based on Ordinary Differential Equations Parameter Estimation, Polymer Testing 18, 11–40CrossRefGoogle Scholar
  29. Kallrath, J. & Kämper, B.-C.: 1992, Another Look at the Early-Type Eclipsing Binary BF Aurigae, A&A 265, 613–625ADSGoogle Scholar
  30. Kallrath, J. & Linnell, A. P.: 1987, A New Method to Optimize Parameters in Solutions of Eclipsing Binary Light Curves, Astrophys. J. 313, 346–357CrossRefADSGoogle Scholar
  31. Kallrath, J., Milone, E. F., Terrell, D., & Young, A. T.: 1998, Recent Improvements to a Version of the Wilson–Devinney Program, ApJ Suppl. 508, 308–313ADSGoogle Scholar
  32. Kallrath, J., Schlöder, J., & Bock, H. G.: 1993, Parameter Fitting in Chaotic Dynamical Systems, CMDA 56, 353–371MATHCrossRefADSGoogle Scholar
  33. Khaliullina, A. I. & Khaliullin, K. F.: 1984, Iterative Method of Differential Corrections for the Analysis of Light Curves of Eclipsing Binaries, Sov. Astron. 28, 228–234ADSGoogle Scholar
  34. Kopal, Z.: 1943, An Application of the Method of Least-Squares to the Adjustment of Photometric Elements of Eclipsing Binaries, Proc. Am. Philos. Soc. 86, 342–350Google Scholar
  35. Kuhn, H. W. & Tucker, A. W.: 1951, Nonlinear Programming, in J. Neumann (ed.), Proceedings Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492, University of California, Berkeley, CAGoogle Scholar
  36. Lawson, C. L. & Hanson, R. J.: 1974, Solving Least-Squares Problems, Prentice Hall, Englewood Cliffs, NJMATHGoogle Scholar
  37. Legendre, A. M.: 1805, Nouvelles Methodes pour la Determination des Orbites des Comètes, Courcier, ParisGoogle Scholar
  38. Levenberg, K.: 1944, A Method for the Solution of Certain Nonlinear Problems in Least-Squares, Quart. Appl. Math. 2, 164–168MATHMathSciNetGoogle Scholar
  39. Limber, D. N.: 1963, Surface Forms and Mass Loss for the Components of Close Binaries – General Case of Non-Synchronous Rotation, ApJ 138, 1112–1132CrossRefADSGoogle Scholar
  40. Linnell, A. P.: 1989, A Light Synthesis Program for Binary Stars. III. Differential Corrections, ApJ 342, 449–462CrossRefADSGoogle Scholar
  41. Linnell, A. P. & Proctor, D. D.: 1970, On Weights in Kopal’s Iterative Method for Total Eclipses, ApJ 162, 683–686CrossRefADSGoogle Scholar
  42. Lootsma, F. A.: 1972, Numerical Methods for Nonlinear Optimization, Academic Press, LondonGoogle Scholar
  43. Marquardt, D. W.: 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math. 11, 431–441MATHCrossRefMathSciNetGoogle Scholar
  44. Metcalfe, T. S.: 1999, Genetic-Algorithm-Based Light Curve Optimization Applied to Observations of the W UMa star BH Cas, AJ 117, 2503–2510CrossRefADSGoogle Scholar
  45. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E.: 1953, Equation of State by Fast Computing Maschines, Journal of Chemical Physics 21, 1087–1092CrossRefADSGoogle Scholar
  46. Milone, E. F., Groisman, G., Fry, D. J. I. F., & Bradstreet, H.: 1991, Analysis and Solution of the Light and Radial Velocity Curves of the Contact Binary TY Bootis, ApJ 370, 677–692CrossRefADSGoogle Scholar
  47. Milone, E. F. & Kallrath, J.: 2008, Tools of the Trade and the Products they Produce: Modeling of Eclipsing Binary Observables, in E. F. Milone, D. A. Leahy, & D. W. Hobill (eds.), Short-Period Binary Stars: Observations, Analyses, and Results, Vol. 352 of Astrophysics and Space Science Library, pp. 191–214, Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  48. Moré, J. J.: 1978, The Levenberg–Marquardt Algorithm: Implementation and Theory, in G. A. Watson (ed.), Numerical Analysis, No. 630 in Lecture Notes in Mathematics, pp. 105–116, Springer, Berlin, GermanyCrossRefGoogle Scholar
  49. Murray, W.: 1972, Numerical Methods for Unconstrained Optimisation, Academic Press, London, UKGoogle Scholar
  50. Napier, W. M.: 1981, A Simple Approach to the Analysis of Eclipsing Binary Light Curves, MNRAS 194, 149–159ADSGoogle Scholar
  51. Nelder, J. A. & Mead, R.: 1965, A Simplex Method for Function Minimization, Comp. J. 7, 308–313MATHGoogle Scholar
  52. Pardalos, P. M. & Mavridou, T. D.: 2008, Simulated Annealing, in C. A. Floudas & P. M. Pardalos (eds.), Encyclopedia of Optimization, pp. 3591–3593, Springer Verlag, New YorkGoogle Scholar
  53. Parkinson, J. M. & Hutchinson, D.: 1972, An Investigation into the Efficiency of Variants on the Simplex Method, in F. Lootsma (ed.), Numerical Methods for Nonlinear Optimisation, pp. 115–135, Academic Press, LondonGoogle Scholar
  54. Plewa, T.: 1988, Parameter Fitting Problem for Contact Binaries, Acta Astron. 38, 415–430ADSGoogle Scholar
  55. Popper, D.: 1993, Discussion: Comments by D. Popper, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, p. 193, Springer, New YorkGoogle Scholar
  56. Powell, M. J. D.: 1964a, A Method for Minimizing a Sum of Squares of Nonlinear Functions without Calculating Derivatives, Comp. J. 7, 303–307Google Scholar
  57. Powell, M. J. D.: 1964b, An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives, Computer Journal 7, 155–162Google Scholar
  58. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T.: 1992, Numerical Recipes – The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 2nd editionGoogle Scholar
  59. Price, W. L.: 1976, A controlled random search procedure for global optimizition, Comp. J. 20, 367–370CrossRefGoogle Scholar
  60. Prša, A.: 2005, Physical Analysis and Numerical Modeling of Eclipsing Binary Stars, PhD Dissertation, Faculty of Mathematics and Physics, Dept. of Physics, University of Lubljana, Lubljana, SloveniaGoogle Scholar
  61. Prša, A. & Zwitter, T.: 2005b, A Computational Guide to Physics of Eclipsing Binaries. I. Demonstrations and Perspectives, ApJ 628, 426–438Google Scholar
  62. Scarborough, J. B.: 1930, Numerical Mathematical Analysis, The Johns Hopkins University Press, Baltimore, MDMATHGoogle Scholar
  63. Schiller, S. J. & Milone, E. F.: 1987, Photometric Analyses of the Hyades Eclipsing Binary HD 27130, AJ 93, 1471–1483CrossRefADSGoogle Scholar
  64. Schiller, S. J. & Milone, E. F.: 1988, Photometric and Spectroscopic Analysis of the Eclipsing Binary DS Andromedae – A Member of NGC 752, AJ 95, 1466–1477CrossRefADSGoogle Scholar
  65. Schlöder, J. P.: 1988, Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung, Bonner Mathematische Schriften 187, Universität Bonn, Institut für Angewandte Mathematik, 53117 BonnGoogle Scholar
  66. Schlöder, J. P. & Bock, H. G.: 1983, Identification of Rate Constants in Bistable Chemical Reactions, in P. Deuflhard & E. Hairer (eds.), Numerical Treatment of Inverse Problems in Differential and Integral Equations, Vol. 2 of Progress in Scientific Computing, pp. 27–47, Birkhäuser, Boston, MAGoogle Scholar
  67. Schneider, I.: 1988, Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfängen bis 1933, Wissenschaftliche Buchgesellschaft, DarmstadtMATHGoogle Scholar
  68. Spendley, W., Hext, G. R., & Himsworth, F. R.: 1962, Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation, Technometrics 4, 441–461MATHCrossRefMathSciNetGoogle Scholar
  69. Stagg, C. R. & Milone, E. F.: 1993, Improvements to the Wilson–Devinney Code on Computer Platforms at the University of Calgary, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 75–92, Springer, New YorkGoogle Scholar
  70. Stigler, S. M.: 1986, The History of Statistics, Belknap, Harvard, Cambridge, MAMATHGoogle Scholar
  71. Terrell, D., Mukherjee, J. D., & Wilson, R. E.: 1992, Binary Stars – A Pictorial Atlas, Krieger Publishing Company, Malabar, FLGoogle Scholar
  72. Vassiliadis, V. S. & Conejeros, R.: 2008, Powell Method, in C. A. Floudas & P. M. Pardalos (eds.), Encyclopedia of Optimization, pp. 3012–3013, Springer Verlag, New YorkGoogle Scholar
  73. Wilson, R. E.: 1966, A Quick Solution Method for Binaries Showing Complete Eclipses, PASP 78, 223–227CrossRefADSGoogle Scholar
  74. Wilson, R. E.: 1978, On the A-Type W Ursae Majoris Systems, ApJ 224, 885–891CrossRefADSGoogle Scholar
  75. Wilson, R. E.: 1979, Eccentric Orbit Generalization and Simulaneous Solution of Binary Star Light and Velocity Curves, ApJ 234, 1054–1066CrossRefADSGoogle Scholar
  76. Wilson, R. E.: 1983, Convergence of Eclipsing Binary Solutions, Ap. Sp. Sci. 92, 229–230CrossRefADSGoogle Scholar
  77. Wilson, R. E.: 1988, Physical Models for Close Binaries and Logical Constraints, in K.-C. Leung (ed.), Critical Observations Versus Physical Models for Close Binary Systems, pp. 193–213, Gordon and Breach, Montreux, SwitzerlandGoogle Scholar
  78. Wilson, R. E.: 1996, private communicationGoogle Scholar
  79. Wilson, R. E.: 1998, Computing Binary Star Observables (Reference Manual to the Wilson-Devinney Programm, Department of Astronomy, University of Florida, Gainesville, FL, 1998 editionGoogle Scholar
  80. Wilson, R. E. & Biermann, P.: 1976, TX Cancri - Which Component Is Hotter?, A&A 48, 349–357ADSGoogle Scholar
  81. Wilson, R. E. & Devinney, E. J.: 1971, Realization of Accurate Close-Binary Light Curves: Application to MR Cygni, ApJ 166, 605–619CrossRefADSGoogle Scholar
  82. Wilson, R. E. & Terrell, D.: 1994, Sub-Synchronous Rotation and Tidal Lag in HD 77581/Vela X-1, in S. S. Holt & C. S. Day (eds.), The Evolution of X-Ray Binaries, No. 308 in AIP Conference Proceedings, pp. 483–486, AIP, American Institute of Physics, Woodbury, NYGoogle Scholar
  83. Wilson, R. E. & Terrell, D.: 1998, X-Ray Binary Unified Analysis: Pulse/RV Application to Vela X1/GP Velorum, MNRAS 296, 33–43CrossRefADSGoogle Scholar
  84. Wyse, A. B.: 1939, An Application of the Method of Least-Squares to the Determination of Photometric Elements of Eclipsing Binaries, Lick. Obs. Bull. 496, 17–27ADSGoogle Scholar
  85. Yarbro, L. A. & Deming, S. N.: 1974, Selection and Preprocessing of Factors for Simplex Optimization, Analytica Chimica Acta 73, 391–398CrossRefGoogle Scholar
  86. Young, A. T., Genet, R. M., Boyd, L. J., Borucki, W. J., Lockwood, G. W., Henry, G. W., Hall, D. S., Smith, D. P., Baliunas, S. L., Donahue, R., & Epand, D. H.: 1991, Precise Automatic Differential Stellar Photometry Analyzing Eclipsing Binaries, PASP 103, 221–242CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations