• Josef Kallrath
  • Eugene F. Milone
Part of the Astronomy and Astrophysics Library book series (AAL)


In this chapter we first identify eclipsing binaries (EBs) as a class of variable stars, which we discuss generally. We then sketch the importance of EBs for the determination of fundamental stellar data. We discuss the conditions under which EB light curve data enable astronomers to derive stellar masses and other parameters. Finally, we provide the foundation for understanding EB models based on equipotential surfaces.


Light Curve Light Curf Binary Star Variable Star Close Binary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, R. G.: 1964, The Binary Stars, Dover Publications, Philadelphia, PA, 3rd editionGoogle Scholar
  2. Baade, W.: 1944, The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula, ApJ 100, 137–146CrossRefADSGoogle Scholar
  3. Baldwin, J. E., Beckett, M. G., Boysen, R. C., Burns, D., Buscher, D. F., Cox, G. C., Haniff, C. A., Mackay, C. D., Nightingale, N. S., Rogers, J., Scheuer, P. A. G., Scott, T. R., Tuthill, P. G., Warner, P. J., Wilson, D. M. A., & Wilson, R. W.: 1996, The First Images from an Optical Aperture Synthesis Array: Mapping of Capella with COAST at Two Epochs, A&A 306, L13–L16ADSGoogle Scholar
  4. Batten, A. H. (ed.): 1973, Binary and Multiple Systems of Stars, Pergamon Press, Oxford, UKGoogle Scholar
  5. Batten, A. H. (ed.): 1989, Algols, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  6. Beckers, J. M.: 1993, Adaptive Optics for Astronomy: Principles, Performance, and Applications, Ann. Rev. Astron. Astrophys. 31, 13–62CrossRefMathSciNetADSGoogle Scholar
  7. Bessel, F. W.: 1845, Über Veränderlichkeit der Eigenen Bewegung der Fixsterne, Astron. Nachr. 22, 145–167CrossRefADSGoogle Scholar
  8. Binnendijk, L.: 1960, Properties of Double Stars, University of Pennsylvannia Press, Philadelphia, PAGoogle Scholar
  9. Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., Macri, L., Sasselov, D. D., Kaluzny, J., Bersier, D., Bresolin, F., Matheson, T., Mochejska, B. J., Przybilla, N., Szentgyorgyi, A. H., Tonry, J., & Torres, G.: 2006b, The First DIRECT Distance to a Detached Eclipsing Binary in M33, Ap. Sp. Sci. 304, 207–209Google Scholar
  10. Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., Macri, L. M., Sasselov, D. D., Kaluzny, J., Stetson, P. B., Bersier, D., Bresolin, F., Matheson, T., Mochejska, B. J., Przybilla, N., Szentgyorgyi, A. H., Tonry, J., & Torres, G.: 2006a, The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33, ApJ 652, 313–322Google Scholar
  11. Bradstreet, D. H.: 1993, Binary Maker 2.0 – An Interactive Graphical Tool for Preliminary Light Curve Analysis, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp 151–166, Springer, New YorkGoogle Scholar
  12. Bradstreet, D. H. & Steelman, D. P.: 2004, Binary Maker 3.0, Contact Software, Norristown PA, 19087.Google Scholar
  13. Brown, R. H.: 1968, Measurement of Stellar Diameters, Ann. Rev. Astron. Astrophys. 6, 13–18CrossRefADSGoogle Scholar
  14. Brown, R. H., Davis, J., & Allen, L. R.: 1974a, The Angular Diameters of 32 Stars, MNRAS 167, 121–136Google Scholar
  15. Brown, R. H., Davis, J., Lake, R. J. W., & Thompson, R. J.: 1974b, The Effect of Limb-Darkening on Measurements of Angular Size with an Intensity Interferometer, MNRAS 167, 475–483Google Scholar
  16. Caroll, S. M., Guinan, E. F., McCook, G. P., & Donahue, R. A.: 1991, Interpreting Epsilon Aurigae, ApJ 367, 278–287CrossRefADSGoogle Scholar
  17. Carr, R. B.: 1972, Photoelectric UBV Photometry of TY Bootis, AJ 77, 155–159CrossRefADSGoogle Scholar
  18. Chen, K.-Y. & Reuning, E. G.: 1966, Infrared Photometry of beta Persei., AJ 71, 283–296CrossRefADSGoogle Scholar
  19. Couteau, P.: 1981/78, Observing Visual Double Stars; Original Title: L’Observation des Étoiles Doubles Visuelles, MIT Press; original publisher Flammarion, Cambridge, MA, A. H. Batten translated this 2nd editionGoogle Scholar
  20. Davidge, T. J. & Milone, E. F.: 1984, A Study of the O’Connell Effect in the Light Curves of Eclipsing Binaries, ApJ Suppl. 55, 571–584CrossRefADSGoogle Scholar
  21. Drechsel, H., Haas, S., Lorenz, R., & Gayler, S.: 1995, Radiation Pressure Effects in Early-Type Close Binaries and Implications for the Solution of Eclipse Light Curves, A&A 294, 723–743ADSGoogle Scholar
  22. Etzel, P. B.: 1981, A Simple Synthesis Method for Solving the Elements of Well-Detached Eclipsing Systems, in E. B. Carling & Z. Kopal (eds.), Photometric and Spectroscopic Binary Systems, pp. 111–120, D. Reidel, Dordrecht, HollandGoogle Scholar
  23. Etzel, P. B.: 1993, Current Status of the EBOP Code, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 113–124, Springer, New YorkGoogle Scholar
  24. Etzel, P. B. & Leung, K.-C.: 1990, Synthesis Methods for Eclipsing-Binary Light Curves, in I. Ibanoglu (ed.), Active Close Binaries, pp. 873–879, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  25. Glasby, J. S.: 1969, Variable Stars, Vol. 50 of International Series of Monographs on Natural Philosophy, Harvard University Press, Cambridge, MAGoogle Scholar
  26. Hadrava, P.: 1997, FOTEL 3 – User’s Guide, Technical report, Astronomical Institute of the Academy of Sciences of the Czech Republic, 25165 Ondrejov, Czech RepublicGoogle Scholar
  27. Hadrava, P.: 2004, FOTEL 4 – User’s guide, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences 92, 1–14ADSGoogle Scholar
  28. Hall, D. S.: 1975, On the period variations and light curve changes in RS Canum Venaticorum, Acta Astronomica 25, 215–224ADSGoogle Scholar
  29. Hartkopf, W. I., Guinan, E. F., & Harmanec, P. (eds.): 2007, Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, No. 240 in Proceedings IAU Symposium, Dordrecht, Holland, Kluwer Academic PublishersGoogle Scholar
  30. Hellier, C.: 2001, Cataclysmic Variable Stars: How and Why they Vary, Springer-PraxisGoogle Scholar
  31. Hilditch, R. W.: 2001, An Introduction to Close Binary Stars, Cambridge University Press, Cambridge, UKGoogle Scholar
  32. Hilditch, R. W., Howarth, I. D., & Harries, T. J.: 2005, Forty Eclipsing Binaries in the Small Magellanic Cloud: Fundamental Parameters and Cloud Distance, MNRAS 357, 304–324ADSCrossRefGoogle Scholar
  33. Hill, G.: 1979, Description of an Eclipsing Binary Light Curve Computer Code with Application to Y Sex and the WUMA Code of Rucinski, Publ. Dom. Astrophys. Obs. 15, 297–325ADSGoogle Scholar
  34. Hill, G. & Hutchings, J. B.: 1970, The Synthesis of Close-Binary Light Curves. I. The Reflection Effect and Distortion in Algol, ApJ 162, 265–280CrossRefADSGoogle Scholar
  35. Hill, G. & Rucinski, S. M.: 1993, LIGHT2: A light-curve modeling program, in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 135–150, Springer, New YorkGoogle Scholar
  36. Hoffmeister, C., Richter, G., & Wenzel, W.: 1984, Veränderliche Sterne, Springer-Verlag, Heidelberg, 2nd editionGoogle Scholar
  37. Hoffmeister, C., Richter, G., & Wenzel, W.: 1985, Variable Stars, Springer-Verlag, Heidelberg, German to English translated 2nd editionGoogle Scholar
  38. Holberg, J. B.: 2007, Sirius – Brightest Diamond in the Night Sky, Springer, New YorkGoogle Scholar
  39. Howell, S. B., VanOutryve, C., Tonry, J. L., Everett, M. E., & Schneider, R.: 2005, A Search for Variable Stars and Planetary Occultations in NGC 2301. II. Variability, PASP 117, 1187–1203CrossRefADSGoogle Scholar
  40. Hubeny, I. & Plavec, M. J.: 1991, Can Disk Model Explain β Lyrae?, AJ 102, 1156–1170CrossRefADSGoogle Scholar
  41. Hut, P.: 1981, Tidal Evolution in Close Binary Systems, A&A 99, 126–140MATHADSGoogle Scholar
  42. Jurkevich, I.: 1970, Machine Solutions of Light Curves of Eclipsing Binary Systems, in A. Beer (ed.), The Henry Norris Russell Memorial Volume, Vol. 12 of Vistas, pp. 63–116, Pergamon Press, Oxford, UKGoogle Scholar
  43. Kallrath, J. & Linnell, A. P.: 1987, A New Method to Optimize Parameters in Solutions of Eclipsing Binary Light Curves, Astrophys. J. 313, 346–357CrossRefADSGoogle Scholar
  44. Kallrath, J., Milone, E. F., Terrell, D., & Young, A. T.: 1998, Recent Improvements to a Version of the Wilson–Devinney Program, ApJ Suppl. 508, 308–313ADSGoogle Scholar
  45. Kang, Y. W. & Wilson, R. E.: 1989, Least-Squares Adjustment of Spot Parameters for Three RS CVn Binaries, AJ 97, 848–865CrossRefADSGoogle Scholar
  46. Kelley, D. H. & Milone, E. F.: 2005, Exploring Ancient Skies – An Encyclopedic Survey of Archaeoastronomy, Springer, New YorkGoogle Scholar
  47. Kholopov, P. N. (ed.): 1985, General Catalogue of Variable Stars, “NAUKA” Publishing House, Moscow, 4th editionGoogle Scholar
  48. Kim, H.-I.: 1989, BV Light Curve Analysis of Algol, ApJ 342, 1061–1067CrossRefADSGoogle Scholar
  49. Krautter, J.: 1997, X-Ray Binaries, in C. Sterken & C. Jaschek (eds.), Light Curves of Variable Stars – A Pictorial Atlas, Cambridge University Press, Cambridge, UKGoogle Scholar
  50. Kuiper, G. P.: 1941, On the Interpretation of Beta Lyrae and Other Close Binaries, ApJ 93, 133–177MATHCrossRefADSGoogle Scholar
  51. Kuiper, G. P.: 1948, Note on W Ursae Majoris Stars, ApJ 108, 451–452ADSGoogle Scholar
  52. Latham, D. W., Mazeh, T., Torres, G., Carney, B. W., Stefanik, R. P., & Davis, R. J.: 1992, Spectroscopic Binaries in the Halo, in A. Duquennoy & M. Mayor (eds.), Binaries as Tracers of Stellar Evolution, pp. 139–144, Cambridge University Press, Cambridge, UKGoogle Scholar
  53. Lindenblad, I.: 1970, Relative Photographic Positions and Magnitude Difference of the Components of Sirius, AJ 75, 841–847CrossRefADSGoogle Scholar
  54. Lucy, L. B.: 1968, The Light Curves of W Ursae Majoris, ApJ 153, 877–884CrossRefADSGoogle Scholar
  55. Lucy, L. B.: 1973, The Common Convective Envelope Model for W Ursae Majoris Systems and the Analysis of their Light Curves, Ap. Sp. Sci. 22, 381–392CrossRefADSGoogle Scholar
  56. Mason, B. D., Hartkopf, W. I., Gies, D. R., McAlister, H. A., & Bagnuolo, W. G.: 1996, Binaries in Clusters and the Field: First Results of a Speckle Survey of O Stars, in E. F. Milone & J.-C. Mermilliod (eds.), The Origins, Evolution, and Destinies of Binary Stars in Clusters, pp. 40–43, A.S.P. Conference Series, Provo, UTGoogle Scholar
  57. McNally, D. (ed.): 1991, Reports on Astronomy Symposium on the Theory of Computing, No. XXIA in Close Binary Stars, The Netherlands, IAUGoogle Scholar
  58. Michelson, A. A.: 1920, On the Application of Interference Methods to Astronomical Measurements, ApJ 51, 257–262CrossRefADSGoogle Scholar
  59. Michelson, A. A. & Pease, F. G.: 1921, Measurement of the Diameter of α Orionis with the Interferometer, ApJ 53, 249–259CrossRefADSGoogle Scholar
  60. Milone, E. F. (ed.): 1993, Light Curve Modeling of Eclipsing Binary Stars, Springer, New YorkGoogle Scholar
  61. Milone, E. F., Chia, T. T., Castle, K. G., Robb, R. M., & Merrill, J. E.: 1980, RW Comae Berenices I. Early Photometry and UBV Light Curves, ApJ Suppl. 43, 339–364CrossRefADSGoogle Scholar
  62. Milone, E. F., Groisman, G., Fry, D. J. I. F., & Bradstreet, H.: 1991, Analysis and Solution of the Light and Radial Velocity Curves of the Contact Binary TY Bootis, ApJ 370, 677–692CrossRefADSGoogle Scholar
  63. Milone, E. F., Wilson, R. E., & Hrivnak, B. J.: 1987, RW Comae Berencis. III. Light Curve Solution and Absolute Parameters, ApJ 319, 325–333CrossRefADSGoogle Scholar
  64. Mochnacki, S. W. & Doughty, N. A.: 1972a, A Model for the Totally Eclipsing W Ursae Majoris System AW UMa, MNRAS 156, 51–65Google Scholar
  65. Mochnacki, S. W. & Doughty, N. A.: 1972b, Models for Five W Ursae Majoris Systems, MNRAS 156, 243–252Google Scholar
  66. Mukherjee, J. D., Peters, G. J., & Wilson, R. E.: 1996, Rotation of Algol Binaries – A Line Profile Model Applied to Observations, MNRAS 283, 613–625ADSGoogle Scholar
  67. Napier, W. M.: 1981, A Simple Approach to the Analysis of Eclipsing Binary Light Curves, MNRAS 194, 149–159ADSGoogle Scholar
  68. Nelson, B. & Davis, W. D.: 1972, Eclipsing-Binary Solutions by Sequential Optimization of the Parameters, ApJ 174, 617–628CrossRefADSGoogle Scholar
  69. Olson, E. C.: 1988, Photometry of Long-Period Algol Binaries: IV. KU Cygni and its Thick, Dusty Accretion Disk, AJ 96, 1439–1446CrossRefADSGoogle Scholar
  70. Osterbrock, D. E.: 2001, Who Really Coined the Word Supernova? Who First Predicted Neutron Stars?, in Bulletin of the American Astronomical Society, Vol. 33 of Bulletin of the American Astronomical Society, p. 1330Google Scholar
  71. Pease, F. G.: 1925, Measurement of the Spectroscopic Binary Star Mizar with the Interferometer, Proc. Nat. Acad. Sci. USA 11, 356–357CrossRefADSGoogle Scholar
  72. Percy, J. R.: 2007, Understanding Variable Stars, Cambridge University Press, Cambridge, UK, Understanding variable stars/John R. Percy. Cambridge: Cambridge University Press, 2007. xxi, 350 p. : ill. ; 26 cm. ISBN: 9780521232531 (hbk.)CrossRefGoogle Scholar
  73. Petit, M.: 1985, Variable Stars, John Wiley & Sons, New YorkGoogle Scholar
  74. Petrie, R. M.: 1939, The Determination of the Magnitude Difference between the Components of Spectroscopic Binaries, Publ. Dom. Astrophys. Obs. 7, 205–238ADSGoogle Scholar
  75. Plavec, M. J.: 1968, Mass Exchange and Evolution of Close Binaries, Adv. in Astron. Astrophys. 6, 201–278Google Scholar
  76. Popper, D. M.: 1980, Stellar Masses, Ann. Rev. Astron. Astrophys. 18, 115–164CrossRefADSGoogle Scholar
  77. Pringle, J. E. & Wade, R. A.: 1985, Interacting Binary Stars, Cambridge University Press, Cambridge, UKGoogle Scholar
  78. Proctor, D. D. & Linnell, A. P.: 1972, Computer Solution of Eclipsing-Binary Light Curves by the Method of Differential Corrections, ApJ Suppl. 24, 449–477CrossRefADSGoogle Scholar
  79. Pustylnik, I. B.: 2005, Resolving the Algol Paradox and Kopal’s Classification of Close Binaries with Evolutionary Implications, Ap. Sp. Sci. 296, 69–78CrossRefADSGoogle Scholar
  80. Rainger, R. P., Hilditch, R. W., & Bell, S. A.: 1990, The Contact Binary System TY Bootis, MNRAS 246, 42–46ADSGoogle Scholar
  81. Ribas, I., Jordi, C., Vilardell, F., Fitzpatrick, E. L., Hilditch, R. W., & Guinan, E. F.: 2005, First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy, ApJ Letters 635, L37–L40CrossRefADSGoogle Scholar
  82. Ribas, I., Jordi, C., Vilardell, F., Giménez, Á., & Guinan, E. F.: 2004, A Program to Determine a Direct and Accurate Distance to M31 from Eclipsing Binaries, New Astronomy Review 48, 755–758CrossRefADSGoogle Scholar
  83. Roche, Éd.: 1849, La Figure d’une Masse Fluide Soumise à l’Attraction d’un Point Éloigné (Premiere Partie), Academie des Sciences et Lettres de Montpellier, Mémoires de la Section des Sciences Tome Premier (1847–1850), 243–262Google Scholar
  84. Roche, Éd.: 1850, La Figure d’une Masse Fluide Soumise à l’Attraction d’un Point Éloigné (Seconde Partie), Academie des Sciences et Lettres de Montpellier, Mémoires de la Section des Sciences Tome Premier (1847–1850), 333–348Google Scholar
  85. Russell, H. N.: 1948a, Idealized Models and Rectified Light Curves for Eclipsing Variables, ApJ 108, 388–412Google Scholar
  86. Russell, H. N.: 1948b, The Royal Road to Eclipses, in Centennial Papers, Vol. 7 of Harvard Observatory Monographs, pp. 181–209, Harvard College Observatory, Cambridge, MAGoogle Scholar
  87. Russell, H. N. & Merrill, J. E.: 1952, The Determination of the Elements of Eclipsing Binary Stars, Princeton. Obs. Contr. 26, 1–96ADSGoogle Scholar
  88. Sahade, J. & Wood, F. B.: 1978, Interacting Binaries, Pergamon Press, Oxford, UKGoogle Scholar
  89. Scarfe, C. D., Barlow, D. J., Fekel, F. C., Rees, R. F., Lyons, R. W., Bolton, C. T., McAlister, H. A., & Hartkopf, W. I.: 1994, The Spectroscopic Triple System HR 6469, AJ 107, 1529–1541CrossRefADSGoogle Scholar
  90. Schlosser, W., Schmidt-Kaler, T., & Milone, E. F.: 1991, Challenges of Astronomy, Springer, New YorkGoogle Scholar
  91. Shao, M. & Colavita, M. M.: 1992, Long-Baseline Optical and Infrared Interferometry, Ann. Rev. Astron. Astrophys. 30, 457–498CrossRefADSGoogle Scholar
  92. Smith, H. J.: 1955, Low-Luminosity Intrinsic Variables with Periods Less than 0.2 Day, AJ 60, 179–180CrossRefADSGoogle Scholar
  93. Sterken, C. & Aerts, C. (eds.): 2006, ASP Conf. Ser. 349: Astrophysics of Variable Stars Google Scholar
  94. Sterken, C. & Jaschek, C. (eds.): 1997, Light Curves of Variable Stars – A Pictorial Atlas, Cambridge University Press, Cambridge, UKGoogle Scholar
  95. Strohmeier, W.: 1972, Variable Stars, Vol. 50 of International Series of Monographs on Natural Philosophy, Pergamon Press, OxfordGoogle Scholar
  96. Terrell, D., Mukherjee, J. D., & Wilson, R. E.: 1992, Binary Stars & A Pictorial Atlas, Krieger Publishing Company, Malabar, FLGoogle Scholar
  97. Van Hamme,W.: 1993, New Limb-Darkening Coefficients for Modeling Binary Star Light Curves, AJ 106, 2096–2117CrossRefADSGoogle Scholar
  98. Van Hamme, W., Hall, D. S., Hargrove, A. W., Henry, G. W., Wasson, R., Barksdale, W. S., Chang, S., Fried, R. E., Green, C. L., Lines, H. C., Lines, R. D., Nielsen, P., Powell, H. D., Reisenweber, R. C., Rogers, C. W., Shervais, S., & Tatum, R.: 1994, The Two Variables in the Triple System HR 6469 = V819 Her: One Eclipsing, One Spotted, AJ 107, 1521–1528CrossRefADSGoogle Scholar
  99. Warner, B. (ed.): 1995, Cataclysmic Variable Stars, Cambridge University Press, Cambridge, UKGoogle Scholar
  100. Wesselink, A. J.: 1969, Surface Brightnesses in the U, B, V System with Applications on Mv and Dimensions of Stars, MNRAS 144, 297–311ADSGoogle Scholar
  101. Wesselink, A. J., Paranya, K., & DeVorkin, K.: 1972, Catalogue of Stellar Dimensions, A&A Suppl. 7, 257–289ADSGoogle Scholar
  102. Wilson, R. E.: 1974, Binary Stars – A Look at Some Interesting Developments, Mercury pp. 4–12Google Scholar
  103. Wilson, R. E.: 1979, Eccentric Orbit Generalization and Simultaneous Solution of Binary Star Light and Velocity Curves, ApJ 234, 1054–1066CrossRefADSGoogle Scholar
  104. Wilson, R. E.: 1990, Accuracy and Efficiency in the Binary Star Reflection Effect, ApJ 356, 613–622CrossRefADSGoogle Scholar
  105. Wilson, R. E.: 1994, Binary-Star Light-Curve Models, PASP 106, 921–941CrossRefADSGoogle Scholar
  106. Wilson, R. E.: 1998, Computing Binary Star Observables (Reference Manual to the Wilson–Devinney Program, Department of Astronomy, University of Florida, Gainesville, FL, 1998 editionGoogle Scholar
  107. Wilson, R. E.: 2001, Variable Stars, in P. Murdin (ed.), Encyclopedia of Astronomy and Astrophysics, Vol. 4, pp. 3424–3433, Institute of Physics Publishing (Nature Publishing Group), Bristol, Philadelphia (London)Google Scholar
  108. Wilson, R. E.: 2007, Close Binary Star Observables: Modeling Innovations 2003–2006, in W. I. Hartkopf, E. F. Guinan, & P. Harmanec (eds.), Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, No. 240 in Proceedings IAU Symposium, pp. 188–197, Kluwer Academic Publishers, Dordrecht, HollandGoogle Scholar
  109. Wilson, R. E. & Caldwell, C. N.: 1978, A Model of V356 Sagittarii, ApJ 221, 917–925CrossRefADSGoogle Scholar
  110. Wilson, R. E. & Devinney, E. J.: 1971, Realization of Accurate Close-Binary Light Curves: Application to MR Cygni, ApJ 166, 605–619CrossRefADSGoogle Scholar
  111. Wilson, R. E. & Devinney, E. J.: 1972, Addendum and Erratum to 1971 paper, ApJ 171, 413CrossRefADSGoogle Scholar
  112. Wilson, R. E. & Devinney, E. J.: 1973, Fundamental Data for Contact Binaries: RZ Comae Berenices, RZ Tauri, and AW Ursae Majoris, ApJ 182, 539–547CrossRefADSGoogle Scholar
  113. Wood, D. B.: 1971, An Analytic Model of Eclipsing Binary Star Systems, AJ 76, 701–710CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations