Common Genetic Susceptibility Loci

  • Mikkel Z. Oestergaard
  • Paul Pharoah


Common genetic variants, that is, variants withResmailearch greater than 5% frequency in the population, are likely to contribute greatly to inherited genetic susceptibility to breast cancer. As with many other common diseases, the success of recent genome-wide association scans has revived research into genetic susceptibility to breast cancer and ended a decade of largely unsuccessful candidate-gene association studies.


Breast Cancer Susceptibility Locus Common Genetic Variant Breast Cancer Association Consortium Common Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M et al (1991) BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6:659–663PubMedGoogle Scholar
  2. Antoniou A, Easton D (2003) Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol 25:190–202CrossRefPubMedGoogle Scholar
  3. Antoniou A, Pharoah P, McMullan G, Day N, Stratton M et al (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83CrossRefPubMedGoogle Scholar
  4. Antoniou AC, Easton DF (2006a) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905CrossRefPubMedGoogle Scholar
  5. Antoniou AC, Easton DF (2006b) Risk prediction models for familial breast cancer. Future Oncol 2:257–274CrossRefPubMedGoogle Scholar
  6. Antoniou AC, Pharoah PD, McMullan G, Day NE, Ponder BA et al (2001) Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol 21:1–18CrossRefPubMedGoogle Scholar
  7. Antoniou AC et al (2008) Common breast cancer-predisposition alleles are associated with breast cancerrisk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet Apr;82(4):937–948CrossRefPubMedGoogle Scholar
  8. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E et al (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38:636–643CrossRefPubMedGoogle Scholar
  9. Blenkiron C, Goldstein L, Thorne N, Spiteri I, Chin S et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214CrossRefPubMedGoogle Scholar
  10. Chanock S, Manolio T, Boehnke M, Boerwinkle E, Hunter D et al (2007) Replicating genotype–phenotype associations. Nature 447:655–660CrossRefPubMedGoogle Scholar
  11. Collaborative Group on Hormonal Factors in Breast Cancer (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58209 women with breast cancer and 101986 women without the disease. Lancet 358:1389–1399CrossRefGoogle Scholar
  12. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MWR et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358CrossRefPubMedGoogle Scholar
  13. Davis JG (1997) Predictive genetic tests: Problems and pitfalls. Ann N Y Acad Sci 833:42–46CrossRefPubMedGoogle Scholar
  14. Dickson C, Spencer-Dene B, Dillon C, Fantl V (2005) Tyrosine kinase signaling in breast cancer: fibroblast growth factors and their receptors. Br Cancer Res 2:191–196CrossRefGoogle Scholar
  15. Easton D (1999) How many more breast cancer predisposition genes are there? Breast Cancer Res 1:14–17CrossRefPubMedGoogle Scholar
  16. Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093CrossRefPubMedGoogle Scholar
  17. Evans DM, Marchini J, Morris AP, Cardon LR (2006) Two-stage two-locus models in genome-wide association. PLoS Genet 2:e157CrossRefPubMedGoogle Scholar
  18. Fisher R (1918) The correlation between relatives on the supposition of Mendelian inheritance. Royal Society of Edinburgh, EdinburghGoogle Scholar
  19. Frank B, Bermejo JL, Hemminki K, Klaes R, Bugert P et al (2005) Re: association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 97:1012–1013, commentPubMedGoogle Scholar
  20. Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genetics 4:e1000054CrossRefPubMedGoogle Scholar
  21. Ghoussaini M, Song H, Koessler T, Al Olama A, Kote-Jarai Z et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Nat Cancer Inst 100:962CrossRefPubMedGoogle Scholar
  22. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158CrossRefPubMedGoogle Scholar
  23. Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16:179–186CrossRefPubMedGoogle Scholar
  24. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefPubMedGoogle Scholar
  25. Honrado E, Benitez J, Palacios J (2006) Histopathology of BRCA1- and BRCA2-associated breast cancer. Crit Rev Oncol Hematol 59:27–39CrossRefPubMedGoogle Scholar
  26. Hopper J, Carlin J (1992) Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol 136:1138–1147PubMedGoogle Scholar
  27. Houlston RS, Peto J (2004) The search for low-penetrance cancer susceptibility alleles. Oncogene 23:6471–6476CrossRefPubMedGoogle Scholar
  28. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874CrossRefPubMedGoogle Scholar
  29. Jang JH, Shin KH, Park JG (2001) Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res 61:3541–3543PubMedGoogle Scholar
  30. Johannsson OT, Idvall I, Anderson C, Borg A, Barkardottir RB et al (1997) Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer 33:362–371CrossRefPubMedGoogle Scholar
  31. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: From theories to phenotypes. Nat Rev Genet 6:451–464CrossRefPubMedGoogle Scholar
  32. Khoury MJ, Beaty TH, Liang KY (1988) Can familial aggregation of disease be explained by familial aggregation of environmental risk factors? Am J Epidemiol 127:674–683PubMedGoogle Scholar
  33. Lakhani S, Reis-Filho J, Fulford L, Penault-Llorca F, van derVijver M et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175CrossRefPubMedGoogle Scholar
  34. Lange K (1997) An approximate model of polygenic inheritance. Genetics 147:1423–1430PubMedGoogle Scholar
  35. Lange K (2002) Mathematical and statistical methods for genetic analysis. Springer, New YorkGoogle Scholar
  36. Lichtenstein P, Holm N, Verkasalo P, Iliadou A, Kaprio J et al (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85CrossRefPubMedGoogle Scholar
  37. Luqmani Y, Graham M, Coombes R (1992) Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 66:273–280PubMedGoogle Scholar
  38. MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MWR et al (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869CrossRefPubMedGoogle Scholar
  39. Manly K, Nettleton D, Hwang J (2004) Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res 14:997–1001CrossRefPubMedGoogle Scholar
  40. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37:413–417CrossRefPubMedGoogle Scholar
  41. McPherson K, Steel C, Dixon J (2000) ABC of breast diseases: breast cancer epidemiology, risk factors, and genetics. Br Med J 321:624CrossRefGoogle Scholar
  42. Merikangas KR, Risch N (2003) Genomic priorities and public health. Science 302:599–601CrossRefPubMedGoogle Scholar
  43. Meyer K, Maia A, O’Reilly M, Teschendorff A, Chin S et al (2008) Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6:e108CrossRefPubMedGoogle Scholar
  44. Moffa AB, Tannheimer SL, Ethier SP (2004) Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells. Mol Cancer Res 2:643–652PubMedGoogle Scholar
  45. Naderi A, Teschendorff A, Barbosa-Morais N, Pinder S, Green A et al (2007) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26:1507–1516CrossRefPubMedGoogle Scholar
  46. Oestergaard MZ, Kalmyrzaev B, Tyrer J, Morrison J, Easton D et al (2008a) Genome-wide genetic interaction scan for breast cancer susceptibility negative. submittedGoogle Scholar
  47. Oestergaard MZ, Tian W, Tasan M, Derti A, Kalmyrzaev B et al (2008b) Using functional linkage to map genetic interactions for breast cancer susceptibility. submittedGoogle Scholar
  48. Peto J, Mack TM (2000) High constant incidence in twins and other relatives of women with breast cancer. Nat Genet 26:411–414CrossRefPubMedGoogle Scholar
  49. Pharoah P, Antoniou A, Bobrow M, Zimmern R, Easton D et al (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–36CrossRefPubMedGoogle Scholar
  50. Pharoah P, Antoniou A, Easton D, Ponder B (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358:2796CrossRefPubMedGoogle Scholar
  51. Pharoah P, Dunning A, Ponder B, Easton D (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4:850–860CrossRefPubMedGoogle Scholar
  52. Ponder B (2001) Cancer genetics. Nature 411:336–341CrossRefPubMedGoogle Scholar
  53. Rhodes D, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J et al (2007) Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166CrossRefPubMedGoogle Scholar
  54. Rhodes D, Yu J, Shanker K, Deshpande N, Varambally R et al (2004) ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6PubMedGoogle Scholar
  55. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222PubMedGoogle Scholar
  56. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517CrossRefPubMedGoogle Scholar
  57. Smid M, Wang Y, Klijn JGM, Sieuwerts AM, Zhang Y et al (2006) Genes associated with breast cancer metastatic to bone. J Clin Oncol 24:2261–2267CrossRefPubMedGoogle Scholar
  58. Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45:646–655CrossRefPubMedGoogle Scholar
  59. Stacey S, Manolescu A, Sulem P, Thorlacius S, Gudjonsson S et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer. Nat Genet 40:703CrossRefPubMedGoogle Scholar
  60. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869, comparative StudyCrossRefPubMedGoogle Scholar
  61. Tannheimer S, Rehemtulla A, Ethier S (2005) Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Br Cancer Res 2:311–320CrossRefGoogle Scholar
  62. Todd JA (2006) Statistical false positive or true disease pathway? Nat Genet 38:731–733CrossRefPubMedGoogle Scholar
  63. Vineis P, Schulte P, McMichael AJ (2001) Misconceptions about the use of genetic tests in populations. Lancet 357:709–712CrossRefPubMedGoogle Scholar
  64. Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Strangeways Research Laboratory, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
  2. 2.Strangeways Research Laboratory, Department of OncologyUniversity of CambridgeCambridgeUK

Personalised recommendations