Minimum-cost Subgraph Algorithms for Static and Dynamic Multicasts with Network Coding

  • Fang Zhao
  • Muriel Médard
  • Desmond Lun
  • Asuman Ozdaglar
Chapter

Network coding, introduced by Ahlswede et al. in their pioneering work [1], has generated considerable research interest in recent years, and numerous subsequent papers, e.g., [2–6], have built upon this concept. One of the main advantages of network coding over traditional routed networks is in the area of multicast, where common information is transmitted from a source node to a set of terminal nodes. Ahlswede et al. showed in [1] that network coding can achieve the maximum multicast rate, which is not achievable by routing alone. When coding is used to perform multicast, the problem of establishing minimum cost multicast connection is equivalent to two effectively decoupled problems: one of determining the subgraph to code over and the other of determining the code to use over that subgraph. The latter problem has been studied extensively in [5, 7–9], and a variety of methods have been proposed, which include employing simple random linear coding at every node. Such random linear coding schemes are completely decentralized, requiring no coordination between nodes, and can operate under dynamic conditions [10]. These papers, however, all assume the availability of dedicated network resources.

Keywords

Europe Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, February 2003.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Koetter and M. Médard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, October 2003.CrossRefGoogle Scholar
  4. 4.
    S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inform. Theory, vol. 5, no. 6, pp. 1973–1982, June 2005.CrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A random linear network coding approach to multicast,” IEEE Trans. Inform. Theory, vol. 52, no. 10, pp. 4413–4430, October 2006.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. K. T. Ho, E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet networks,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2608–2623, June 2006.CrossRefMathSciNetGoogle Scholar
  7. 7.
    T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger, “On randomized network coding,” in Proc. of the 41th Annual Allerton Conference on Communication, Control, and Computing, October 2003.Google Scholar
  8. 8.
    T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. 2003 IEEE International Symposium on Information Theory (ISIT’03), Yokohama, Japan, June–July 2003.Google Scholar
  9. 9.
    P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of the 41th Annual Allerton Conference on Communication, Control, and Computing, October 2003.Google Scholar
  10. 10.
    T. Ho, B. Leong, M. Médard, R. Koetter, Y.-H. Chang, and M. Effros, “On the utility of network coding in dynamic environments,” in Proc. 2004 International Workshop on Wireless Ad-hoc Networks (IWWAN’04), 2004.Google Scholar
  11. 11.
    Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-energy multicast in mobile ad hoc networks using network coding,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1906–1918, November 2005.CrossRefGoogle Scholar
  12. 12.
    D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H. Lee, “Achieving minimum cost multicast: A decentralized approach based on network coding,” in Proc. IEEE Infocom, vol. 3, March 2005, pp. 1607–1617.Google Scholar
  13. 13.
    K. Bharath-Kumar and J. M. Jaffe, “Routing to multiple destinations in computer networks,” IEEE Trans. Commun., vol. 31, no. 3, pp. 343–351, March 1983.MATHCrossRefGoogle Scholar
  14. 14.
    B. M. Waxman, “Routing of multicast connections,” IEEE J. Select. Areas Commun., vol. 6, no. 9, pp. 1617–1622, December 1988.CrossRefGoogle Scholar
  15. 15.
    M. Chiang, “Nonconvex optimization of communication systems,” in Advances in Mechanics and Mathematics, Special Volume on Strang’s 70th Birthday, D. Gao and H. Sherali, Eds. Springer, New York, NY, U.S.A., 2008.Google Scholar
  16. 16.
    H. D. Sherali and G. Choi, “Recovery of primal solutions when using subgradient optimization methods to solve lagrangian duals of linear programs,” Oper. Res. Lett., vol. 19, pp. 105–113, 1996.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Larsson, M. Patriksson, and A. Strömberg, “Ergodic primal convergence in dual subgradient schemes for convex programming,” Math. Program., vol. 86, pp. 283–312, 1999.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    K. C. ‘Kiwiel, T. Larsson, and P. O. Lindberg, “Lagrangian relaxation via ballstep subgradient methods,” Math. Oper. Res., vol. 32, no. 3, pp. 669–686, August 2007.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate analysis for dual subgradient methods”, MIT LIDS, Tech. Rep., 2007.Google Scholar
  20. 20.
    D. S. Lun, M. Médard, and D. R. Karger, “On the dynamic multicast problem for coded networks,” in Proc. of WINMEE, RAWNET and NETCOD 2005 Workshops, April 2005.Google Scholar
  21. 21.
    M. Imase and B. M. Waxman, “Dynamic steiner tree problem,” SIAM J. Discrete Math., vol. 4, no. 3, pp. 369–384, August 1991.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    S. Raghavan, G. Manimaran, and C. S. R. Murthy, “A rearrangeable algorithm for the construction delay-constrained dynamic multicast trees,” IEEE/ACM Trans. Netw., vol. 7, no. 4, pp. 514–529, August 1999.CrossRefGoogle Scholar
  23. 23.
    J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-efficient broadcast and multicast trees in wireless networks,” Mobile Netw. Appl., vol. 7, pp. 481–492, 2002.CrossRefGoogle Scholar
  24. 24.
    D.P. Bertsekas, Nonlinear Programming. Athena Scientific, Nashua, NH, U.S.A, 1995.Google Scholar
  25. 25.
    A. Nedić, “Subgradient methods for convex minimization,” Ph.D. dissertation, Massachusetts Institute of Technology, June 2002.Google Scholar
  26. 26.
    J. V. Burke and M. C. Ferris, “Weak sharp minima in mathematical programming,” SIAM J. Control Optim., vol. 31, no. 5, pp. 1340–1359, September 1993.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,” Wireless Commun. Mob. Comput., vol. 2, no. 5, pp. 483–502, August 2002.CrossRefGoogle Scholar
  28. 28.
    The rocketfuel project. [Online]. Available: www.cs.washington.edu/research/networking/rocketfuel

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Fang Zhao
    • 1
  • Muriel Médard
    • 1
  • Desmond Lun
    • 2
  • Asuman Ozdaglar
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.The Broad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations