Measurement and Modeling of Wireless Channels

  • David G. Michelson
  • Saeed S. Ghassemzadeh

As wireless signals traverse the path from a transmitter to a receiver, they will be diffracted, scattered, and absorbed by the terrain, trees, buildings, vehicles, and people that comprise the propagation environment. In the process, the signal may be distorted or impaired in various ways. The presence of obstructions along the path may cause the signal to experience greater attenuation than it would under free space conditions. If the signal is scattered by obstacles located throughout the coverage area, replicas of the signal may take multiple paths from the transmitter to the receiver. Because the replicas will arrive at the receiver after different delays, the signal will experience time dispersion. Because the replicas will also arrive from different directions, the signal will experience angular dispersion.


Path Loss Channel Impulse Response Doppler Spectrum Body Area Network Wireless Personal Area Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Parsons, The Mobile Radio Propagation Channel, Halsted Press, 1992, p. v.Google Scholar
  2. 2.
    A. H. Waynick, “The early history of ionospheric investigations in the United States,” Phil. Trans. R. Soc. Lond. A., vol. 280, no. 1293, pp. 11–25, 23 Oct. 1975.CrossRefGoogle Scholar
  3. 3.
    D. E. Kerr, Propagation of Short Radio Waves. vol. 13 of the MIT Radiation Laboratory Series. New York: McGraw-Hill, 1951.Google Scholar
  4. 4.
    Y. Okumura et al., “Field strength and its variability in VHF and UHF land-mobile radio service.” Rev. Elec. Commun. Lab., no. 9-10, pp. 825–873, 1968.Google Scholar
  5. 5.
    R. H. Clarke, “A statistical theory of mobile radio reception,” Bell Sys. Tech. J., vol. 47, pp. 957–1000, Jul.–Aug. 1968.Google Scholar
  6. 6.
    P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. 11, no. 4, pp. 360–393, Dec. 1963.CrossRefGoogle Scholar
  7. 7.
    D. C. Cox, “Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment,” IEEE Trans. Antennas Propag., vol. 20, no. 5, pp. 625–635, Sep. 1972.CrossRefGoogle Scholar

Characterization of Wireless Channels

  1. 8.
    W. Jakes, Ed., Microwave Mobile Communications, Wiley, 1974.Google Scholar
  2. 9.
    D. Greenwood and L. Hanzo, “Characterization of mobile radio channels,” in Mobile Radio Communications, R. Steele, Ed., pp. 92–185, 1992.Google Scholar
  3. 10.
    H. L. Bertoni, W. Honcharenko, L. R. Maciel and H. H. Xia, “UHF propagation prediction for wireless personal communication,” Proc. IEEE, vol. 82, no. 9, pp. 1333–1359, Sep. 1994.CrossRefGoogle Scholar
  4. 11.
    A. F. Molisch, Wireless Communications. Wiley, 2005, pp. 43–170.Google Scholar
  5. 12.
    S. Thoen, L. Van der Perre and M. Engels, “Modeling the channel time-variance for fixed wireless communications,” IEEE Commun. Lett., vol. 6, no. 8, pp. 331–333, Aug. 2002.CrossRefGoogle Scholar
  6. 13.
    A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 1, pp. 128–137, Feb. 1987.CrossRefGoogle Scholar
  7. 14.
    R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport and J. H. Reed, “Overview of spatial channel models for antenna array communication systems,” IEEE Pers. Commun., vol. 5, no. 1, pp.10–22, Feb. 1998.CrossRefGoogle Scholar
  8. 15.
    Q. H. Spencer, B. D. Jeffs, M. A. Jensen and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.CrossRefGoogle Scholar
  9. 16.
    M. Steinbauer, A. F. Molisch and E. Bonek, “The double-directional radio channel,” IEEE Antennas Propag. Mag., vol. 43, no. 4, pp. 51–63, Aug. 2001.CrossRefGoogle Scholar

Ultrawideband Channel Models

  1. 17.
    A. F. Molisch, J. R. Foerster and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Commun., vol. 10, no. 6, pp. 14–21, Dec. 2003.CrossRefGoogle Scholar
  2. 18.
    A. F. Molisch, D. Cassioli, C. C. Chong, S. Emami, A. Fort, K. Balakrishnan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak and M. Z. Win, “A comprehensive standardized model for ultrawideband propagation channels,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3151–3166, Nov. 2006.CrossRefGoogle Scholar
  3. 19.
    A. F. Molisch, “Ultrawideband propagation channels – Theory, measurement, and modeling,” IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1528–1545, Sep. 2005.CrossRefGoogle Scholar
  4. 20.
    L. J. Greenstein, S. S. Ghassemzadeh, S. C. Hong and V. Tarokh, “Comparison study of UWB indoor channel models,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 128–135, Jan. 2007.CrossRefGoogle Scholar

MIMO Channel Models

  1. 21.
    G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. vol. 6, pp. 311–335, 1998.CrossRefGoogle Scholar
  2. 22.
    D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith and A. Naguib, “From theory to practice: An overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.CrossRefGoogle Scholar
  3. 23.
    M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2810–2824, Nov. 2004.CrossRefGoogle Scholar
  4. 24.
    V. Erceg et al., “TGn channel models,” IEEE P802.11 Working Group for Wireless Local Area Networks, Doc. No. IEEE 802.11-03/940/r4, revised 10 May 2004.Google Scholar
  5. 25.
    D. S. Baum, J. Hansen, J. Salo, G. Del Galdo, M. Milojevic and P. Kyösti, “An interim channel model for beyond-3G systems,” in Proc. IEEE VTC 2005-Spring, 30 May–1 Jun. 2005, pp. 3132–3136.Google Scholar
  6. 26.
    M. Narandžić, C. Schneider, R. Thomä, T. Jämsä, P. Kyösti, X. Zhao, “Comparison of SCM, SCME and WINNER channel models,” in Proc. IEEE VTC 2007-Spring, 22–25 Apr. 2007, pp. 413–417.Google Scholar
  7. 27.
    P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. degli-Esposti, H. Hofstetter, P. Kyösti, D. Laurenson, G. Matz, A. F. Molisch, C. Oestges and H. Özcelik, “Survey of channel and radio propagation models for wireless MIMO systems,” EURASIP J. Wireless Commun. Netw. vol. 2007, p. 19, doi:10.1155/2007/19070.Google Scholar

Channel Models for Body Area Networks

  1. 28.
    A. Alomainy, Y. Hao, X. Hu, C. G. Parini and P. S. Hall, “UWB on-body radio propagation and system modelling for wireless body-centric networks,” IEE Proc. Commun., vol. 153, no. 1, pp. 107–114, Feb. 2006.CrossRefGoogle Scholar
  2. 29.
    P. S. Hall and Y. Hao (Eds.), Antennas and Propagation for Body-centric Communications. Boston, MA : Artech House, 2006.Google Scholar
  3. 30.
    Y. Hao, P. S. Hall and K. Ito, (Eds.), Special Issue on Antennas and Propagation for Body-Centric Wireless Communications, IEEE Trans. Antennas Propag., to be published in Dec. 2008.Google Scholar
  4. 31.
    A. Fort, J. Ryckaert, C. Desset, P. De Donecker, P. Wambacq and L. Van Biesen, “Ultra-wideband channel model for communication around the human body,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 927–933, Apr. 2006.CrossRefGoogle Scholar
  5. 32.
    A. Fort, C. Desset, P. De Donecker, P. Wambacq and L. Van Biesen, “An ultra-wideband body area propagation channel model: From statistics to implementation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1820–1826, Apr. 2006.CrossRefGoogle Scholar
  6. 33.
    K. Y. Yazdandoost and K. Sayrafian-Pour, “Channel model for body area network,” IEEE P802.15 Working Group for Wireless Personal Area Networks, IEEE P802.15-08-0780-02-0006, 12 Nov. 2008.Google Scholar

Channel Models for Vehicular Networks

  1. 34.
    J. Yin et al., “Performance evaluation of safety applications over DSRC vehicular ad hoc networks,” in Proc. VANET 2004, 1 Oct. 2004, pp. 1–9.Google Scholar
  2. 35.
    M. Toyota, R. K. Pokharel and O. Hashimoto, “Efficient multi-ray propagation model for DSRC EM environment on express highway,” Elec. Lett., vol. 40, no. 20, pp. 1278–1279, 30 Sep. 2004.CrossRefGoogle Scholar
  3. 36.
    G. Acosta-Marum and M. A. Ingram, “Six time- and frequency-selective empirical channel models for vehicular wireless LANs,” IEEE Veh. Technol. Mag., vol. 2, no. 4, pp. 4–11, Dec. 2007.Google Scholar
  4. 37.
    I. Sen and D. W. Matolak, “Vehicle-vehicle channel models for the 5-GHz band,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 2, pp. 235–245, Jun. 2008.CrossRefGoogle Scholar
  5. 38.
    I. Tan, W. Tang, K. Laberteaux and A. Bahai, “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proc. IEEE ICC 2008, 19–23 May 2008, pp. 4882–4888.Google Scholar

Channel Models for 60 GHz and Terahertz Systems

  1. 39.
    P. Smulders, “60 GHz radio: Prospects and future directions,” in Proc. 10th IEEE Symp. Commun. Veh. Technol., Benelux, Nov. 2003, pp. 1–8.Google Scholar
  2. 40.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel and T. Kürner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag., vol. 49, no. 6, pp. 24–39, Dec. 2007.CrossRefGoogle Scholar
  3. 41.
    C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN and ZigBee,” IEEE Wireless Commun., vol. pp. 70–78, Aug. 2007.Google Scholar
  4. 42.
    T. Zwick, T. J. Beukema and H. Nam, “Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel,” IEEE Trans. Veh. Technol., vol. 54, no. 4, pp. 1266–1277, Jul. 2005.CrossRefGoogle Scholar
  5. 43.
    S. K. Yong, “TG3c channel modeling sub-committee final report,” IEEE P802.15 Working Group for Wireless Personal Area Networks, Doc. No. IEEE 15-07-0584-01-003c, 13 Mar. 2007.Google Scholar
  6. 44.
    C. Jansen, R. Piesiewicz, D. Mittleman, T. Kürner and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1413–1419, May 2008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada
  2. 2.AT&T Labs - ResearchFlorham ParkUSA

Personalised recommendations