Skip to main content

Mathematical Methods in Dna Topology: Applications to Chromosome Organization and Site-Specific Recombination

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 150))

Abstract

In recent years, knot theory and low-dimensional topology have been effectively used to study the topology and geometry of DNA under different spatial constraints, and to solve the topological mechanisms of enzymes such as site-specific recombinases and topoisomerases. Through continuous collaboration and close interaction with experimental biologists, many problems approached and the solutions proposed remain relevant to the biological community, while being mathematically and computationally interesting. In this paper, we illustrate the use of mathematical and computational methods in a variety of DNA topology problems. This is by no means an exhaustive description of techniques and applications, but is rather intended to introduce the reader to the exciting applications of topology to the study of DNA. Many more examples will be found throughout this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Alén, D.J. Sherratt, and S.D. Colloms, Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination., EMBO J. 16 (1997), pp. 5188–5197.

    PubMed  PubMed Central  Google Scholar 

  2. J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Linking of Uniform Random Polygons in Confined Spaces, J. Physics A 40 (2007), pp. 1925–1936.

    Google Scholar 

  3. J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Sampling Large Random Knots in a Confined Space, J. Physics A 40 (2007), pp. 11697–11711.

    Google Scholar 

  4. J. Arsuaga, R. Tan, M. Vazquez, D.W. Sumners, and S.C. Harvey, Investigation of viral DNA packaging using molecular mechanics models, Biophys. Chem. 101 (2002), pp. 475–484.

    Google Scholar 

  5. J. Arsuaga, M. Vazquez, S. Trigueros, D.W. Sumners, and J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99 (2002), pp. 5373–5377.

    CAS  PubMed  Google Scholar 

  6. J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D.W. Sumners, and J. Roca, DNA knots reveal a chiral organization of DNA in phage capsids, Proc. Natl. Acad. Sci. USA 102 (2005), pp. 9165–9169.

    CAS  PubMed  Google Scholar 

  7. J. Arsuaga and Y. Diao, DNA Knotting in Spooling Like Conformations in Bacteriophages, Computational and Mathematical Methods in Medicine 9 (3) (2008), pp. 303–316.

    Google Scholar 

  8. K. Aubrey, S. Casjens, and G. Thomas, Secondary structure and interactions of the packaged ds DNA genome of bacteriophage P22 investigated by Raman difference spectroscopy, Biochemistry 31 (1992), pp. 11835–11842.

    CAS  PubMed  Google Scholar 

  9. F.X. Barre and D.J. Sherratt, Chromosome dimer resolution . In The Bacterial Chromosome (Higgins, N.P., ed.), Washington, DC: ASM Press (2005), pp. 513–524.

    Google Scholar 

  10. L. Black,W. Newcomb, J. Boring, and J. Brown, Ion etching bacteriophage T4: support for a spiral-fold model of packaged DNA, Proc. Natl. Acad. Sci. USA 82 (1985), pp. 7960–7964.

    CAS  PubMed  Google Scholar 

  11. T. Blackstone,P. McGuirck,C. Laing, M. Vazquez, J. Roca, and J. Arsuaga, The role of writhe in DNA condensation, Proceedings of International Workshop on Knot Theory for Scientific Objects. OCAMI Studies Volume 1 (2007). Osaka Municipal Universities Press; pp. 239–250.

    Google Scholar 

  12. M. Bregu, D.J. Sherratt, and S.D. Colloms, Accessory factors determine the order of strand exchange in Xer recombination at psi., EMBO J. 21 (2002), pp. 3888–3897.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Buck and E. Flapan, Predicting Knot or Catenane Type of Site-Specific Recombination Products, J Molecular Biology 374 (5) (2007), pp. 1186-1199.

    CAS  Google Scholar 

  14. D. Buck and E. Flapan, A topological characterization of knots and links arising from site-specific recombination., J. Phys. A: Math. Gen. 40 (2007), pp. 12377–12395.

    Google Scholar 

  15. D. Buck and C. Verjovsky-Marcotte, Tangle-solutions for a family of DNA rearranging proteins., Math Proc Camb Phil Soc 139 (2005), pp. 59–80.

    Google Scholar 

  16. D. Buck and C. Verjovsky-Marcotte, Classification of Tangle Solutions for Integrases, A Protein Family that Changes DNA Topology., J. Knot. Theory Ramifications 16 (2007), pp. 969–995.

    Google Scholar 

  17. G. Burde and H. Zieschang, Knots., vol. 5, In de Gruytier Studies in Mathematics (Gabriel, P., ed.) Walter de Gruyter, Berlin., 1985.

    Google Scholar 

  18. H. Cabrera Ibarra, On the classification of rational 3-tangles, J. Knot Theory Ramifications 12 (7) (2003), pp. 921–946.

    Google Scholar 

  19. H. Cabrera Ibarra, Results on the classification of rational 3-tangles, J. Knot Theory Ramifications 13 (2) (2004), pp. 175–192.

    Google Scholar 

  20. K. Cerritelli, N. Cheng, A. Rosenberg, C. Mcpherson, F. Booy, and A. Steven, Encapsidated conformation of bacteriophage T7 DNA, Cell 91 (1997), pp. 271–280.

    CAS  PubMed  Google Scholar 

  21. D.K. Chattoraj and R.B. Inman, Location of DNA ends in P2, 186, P4 and lambda bacteriophage heads, J. Mol. Biol. 87 (1974), pp. 11–22.

    CAS  PubMed  Google Scholar 

  22. S.D. Colloms, J. Bath, and D.J. Sherratt, Topological selectivity in Xer site-specific recombination, Cell 88 (1997), pp. 855–864.

    CAS  PubMed  Google Scholar 

  23. J.H. Conway, An enumeration of knots and links, and some of their algebraic properties., Computational Problems in Abstract Algebra, Pergamon, Oxford, UK (1967), pp. 329–358.

    Google Scholar 

  24. N.R. Cozzarelli, M.A. Kraznow, S.P. Gerrard, and J.H. White, A topological treatment of recombination and topoisomerases., Cold Spring Harbor Symp. Quant. Biol. 49 (1984), pp. 383–400.

    CAS  PubMed  Google Scholar 

  25. N.J. Crisona, R.L. Weinberg, B.J. Peter, D.W. Sumners, and N.R. Cozzarelli, The topological mechanism ofphage lambda integrase., J. Mol. Biol. 289 (1999), pp. 747–775.

    CAS  PubMed  Google Scholar 

  26. I. Darcy, Biological distances on DNA knots and links: applications to Xer recombination., J. Knot Theory Ramification 10 (2001), pp. 269–294.

    Google Scholar 

  27. I.K. Darcy, J. Chang, N. Druivenga, C. McKinney, R.K. Medikonduri, S. Mills, J. Navarra-Madsen, A. Ponnusamy, J. Sweet, and T. Thompson, sl Coloring the Mu transpososome., BMC Bioinformatics 7 (2006), pp. 435.

    PubMed  PubMed Central  Google Scholar 

  28. I.K. Darcy, J. Luecke, and M. Vazquez Tangle analysis of difference topology experiments: applications to a Mu-DNA protein complex, IMA preprint series, (2008),http://www.ima.umn.edu/preprints/oct2007/2177_OnlinePDF.pdf.

  29. I.K. Darcy and R.G. Scharein, TopoICE-R: 3D visualization modeling the topology of DNA recombination., Bioinformatics 22 (14) (2006), pp. 1790–1791.

    CAS  PubMed  Google Scholar 

  30. Y. Diao, The Knotting of Equilateral Polygons in R 3, Journal of Knot Theory and its Ramifications, 4 (2) (1995), pp. 189–196.

    Google Scholar 

  31. Y. Diao, A. Dobay, R.B. Kusner, K. Millet, and A. Stasiak, The Average Crossing Number of Equilateral Random Polygons J. Physics A 36 (46) (2003), pp. 11561–11574.

    Google Scholar 

  32. Y. Diao and C. Ernst, The Average Crossing Number of Gaussian Random Walks and Polygons, Physical and numerical models in knot theory, J.A. Calvo, K.C. Millett, E.J. Rawdon, and A. Stasiak, editors, Series on Knots and Everything 36 (2005), World Scientific, pp. 275–292.

    Google Scholar 

  33. Y. Diao, J. Nardo, and Y. Sun, Global Knotting in Equilateral Random Polygons; Journal of Knot Theory and its Ramifications, 10 (4) (2001), pp. 597– 607.

    Google Scholar 

  34. Y. Diao, N. Pippenger, and D.W. Sumners, On Random Knots, Journal of Knot Theory and its Ramifications, 3 (3) (1994), pp. 419–429.

    Google Scholar 

  35. W.C. Earnshaw and S.R. Casjens, DNA packaging by the double-stranded DNA bacteriophages, Cell 21 (1980), pp. 319–331.

    CAS  PubMed  Google Scholar 

  36. J. Emert and C. Ernst, N-string tangles, J. Knot. Theory Ramifications 9 (8)(2000), pp. 987–1004.

    Google Scholar 

  37. C. Ernst, Tangle equations, J. Knot. Theory Ramifications 5 (1996), pp. 145–159.

    Google Scholar 

  38. C. Ernst, Tangle equations II, J. Knot. Theory Ramifications 6 (1997), pp. 1–11.

    Google Scholar 

  39. C. Ernst and D.W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Cambridge Phil. Soc. 108 (1990), pp. 489–515.

    Google Scholar 

  40. C. Ernst and D.W. Sumners, Solving tangle equations arising in a DNA recombination model, Math. Proc. Cambridge Phil. Soc. 126 (1999), pp. 23–36.

    Google Scholar 

  41. O. Espeli and K.J. Marians,, Untangling intracellular DNA topology, Mol Mi–crobiol 52 (2004), pp. 925–931.

    CAS  PubMed  Google Scholar 

  42. A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, and W.M. Gelbart, Osmotic pressure inhibition of DNA ejection from phage, Proc. Natl. Acad. Sci. USA 100 (2003), pp. 9292–9295.

    CAS  PubMed  Google Scholar 

  43. J.R. Goldman and L.H. Kauffman, Rational tangles, Advan. Appl. Math. 18 (1997), pp. 300–332.

    Google Scholar 

  44. D.N. Gopaul, F. Guo, and G.D. Van Duyne, Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination, EMBO J. 17 (1998), pp. 4175–4187.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. S.C. Gourlay and S.D. Colloms, Control of Cre recombination by regulatory elements from Xer recombination systems, Mol. Microbiol. 52 (2004), pp. 53–65.

    CAS  PubMed  Google Scholar 

  46. I. Grainge, D. Buck, and M. Jayaram, Geometry of site alignment during Int family recombination: antiparallel synapsis by the FLP recombinase, J. Mol. Biol. 298 (2000), pp. 749–764.

    CAS  PubMed  Google Scholar 

  47. I. Grainge, M. Bregu, M. Vazquez, V. Sivanathan, S.C. Ip, and D.J. Sherratt, Unlinking chromosomes catenated in vivo by site-specific recombination, EMBO J 26 (19) (2007), pp. 4228–4238.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. B. Hallet and D.J. Sherratt, Transposition and site-specific recombination adapting DNA cut-and paste mechanism to a variety of genetic rearrangements, FEMS Microbiol. Rev. (1997), p. 21.

    Google Scholar 

  49. M. Hirasawa and K. Shimokawa, Dehn surgeries on strongly invertible knots which yield lens spaces, Proc. Am. Math. Soc. 128 (2000), pp. 3445–3451.

    Google Scholar 

  50. V.F. Holmes and N.R. Cozzarelli, Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 1322–1324.

    CAS  PubMed  Google Scholar 

  51. N. Hud, Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model, Biophys. J. 69 (1995), pp. 1355–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. S.C. Ip, M. Bregu, F.X. Barre, and D.J. Sherratt, Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination., EMBO J 22 (2003), pp. 6399–6407.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. P.J. Jardine and D.L. Anderson, DNA packaging in double-stranded DNA phages The bacteriophages (2006), Ed. Richard Calendar, Oxford University Press, pp. 49–65.

    Google Scholar 

  54. R. Kanaar, A. Klippel, E. Shekhtman, J. M. Dungan, R. Kahmann, and N.R. Cozzarelli, Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand-exchange, DNA site alignment, and enhancer action, Cell 62 (1990), pp. 353–366

    CAS  PubMed  Google Scholar 

  55. V. Katritch, Bednar, D. Michoud, R. G. Scharein, J. Dubochet, and A. Stasiak, Geometry and physics of knots, Nature 384 (1996), pp. 142–145.

    CAS  Google Scholar 

  56. E. Kellenberger, E. Carlemalm, J. Sechaud, A. Ryter, and G. Haller, Considerations on the condensation and the degree of compactness in non-eukaryotic DNA-containing plasmas, In Bacterial Chromatin: Proceedings of the Symposium "Selected Topics on Chromatin Structure and Function" (eds. C. Gualerzi and C. L. Pon), Springer, Berlin (1986), pp. 11–25.

    Google Scholar 

  57. S. Kim and I.K. Darcy, Topological analysis of DNA-protein complexes, Included in this volume, Mathematics of DNA Structure, Function and Interactions (eds C.J. Benham, S. Harvey, W.K. Olson, D.W. Sumners and D. Swigon), Springer Science + Business Media, LLC, New York, (2009).

    Google Scholar 

  58. K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, and M.D. Frank-kamenetskii, Effect of Excluded Volume on Topological Properties of Circular DNA, J. Biomolec. Str. and Dyn. 5 (1988), pp. 1173–1185.

    CAS  Google Scholar 

  59. J.C. LaMarque, T.L. Le, and S.C. Harvey, Packaging double-helical DNA into viral capsids, Biopolymers 73 (2004), pp. 348–355.

    CAS  PubMed  Google Scholar 

  60. A. Landy, Coming or going its another pretty picture for the lambda-Int family album, Proc. Natl Acad. Sci. USA 96 (1999), pp. 7122–7124.

    CAS  PubMed  Google Scholar 

  61. J. Lepault, J. Dubochet, W. Baschong, and E. Kellenberger, Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples EMBO J. 6 (1987), pp. 1507–1512.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. W.B.R. Lickorish, Prime knots and tangles., Trans. Am. Math. Soc. 267 (1981), pp. 321–332.

    Google Scholar 

  63. L.F. Liu, J.L. Davis, and R. Calendar, Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases, Nucleic Acids Res. 9 (1981), pp. 3979–3989.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. L.F. Liu, L. Perkocha, R. Calendar, and J.C. Wang, Knotted DNA from bacteriophage capsids, Proc. Natl. Acad. Sci. USA 78 (1981), pp. 5498–5502.

    CAS  PubMed  Google Scholar 

  65. J.P.J. Michels and F.W. Wiegel, On the topology of a polymer ring, Proc. R. Soc. London Ser A 403 (1986), pp. 269–284.

    CAS  Google Scholar 

  66. C. Micheletti, D. Marenduzzo, E. Orlandini, and D.W. Sumners, Knotting of random ring polymers in confined spaces, J. Chem. Phys. 124 (2006), pp. 064903.1–10.

    Google Scholar 

  67. K. Millett, Knotting of regular polygons in 3-space, Random knotting and linking (Vancouver, BC, 1993), World Sci. Publishing, Singapore (1994), pp. 31–46.

    Google Scholar 

  68. K. Millett, Monte Carlo Explorations of Polygonal Knot Spaces, Knots in Hellas'98 (Delphi), Ser. Knots Everything 24 (2000), World Scientific, pp. 306–334.

    Google Scholar 

  69. H.R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Phil. Soc. 99 (1986), pp. 107–109.

    Google Scholar 

  70. K. Murasugi, Knot Theory, Its Applications (Translated by B. Kurpita), Birkhauser, Boston, MA. 1996.

    Google Scholar 

  71. S.E. Nunes-Duby, H.J. Kwon, R.S.T. Tirumalai, T. Ellenberger, and A. Landy, Similarities and differences among 105 members of the Int family of site-specific recombinases, Nucl. Acids Res. 26 (1998), pp. 391–406.

    CAS  PubMed  Google Scholar 

  72. A.S. Petrov, M.B. Boz, and S.C. Harvey, The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape, J Struct Biol. 160 (2007) pp. 241–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. P. Plunkett, M. Piatek, A. Dobay, J.C. Kern, K. Millet, A. Stasiak, and E. Rawdon, Total curvature and total torsion of knotted polymers, Macromolecules 40 (2007), pp. 3860–3867.

    CAS  Google Scholar 

  74. L. Rayleigh, On the problems of random vibrations, and of random flights in one, two, or three dimensions, Phil. Mag. S. 6. 37 (220) (1919), pp. 321–347.

    Google Scholar 

  75. D. Raymer and D. Smith, Spontaneous knotting of an agitated string Proc. Natl. Acad. Sci

    Google Scholar 

  76. K. Richards, R. Williams, and R. Calendar, Mode of DNA packing within bacteriophage heads J. Mol. Biol. 78 (1973), pp. 255–259.

    CAS  PubMed  Google Scholar 

  77. D. Rolfsen, Knots Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA., 1976.

    Google Scholar 

  78. V.V. Rybenkov, N.R. Cozzarelli, and A.V. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Natl. Acad. Sci. USA 90 (1993), pp. 5307–5311.

    CAS  PubMed  Google Scholar 

  79. P.D. Sadowski, Site-specific genetic recombination: hops, flips, and flops, FASEB J. 7 (1993), pp. 760–767.

    CAS  PubMed  Google Scholar 

  80. Y. Saka and M. Vazquez, TangleSolve: topological analysis of site-specific recombination, Bioinformatics 18 (2002), pp. 1011–1012.

    CAS  PubMed  Google Scholar 

  81. J.B. Schvartzman and A. Stasiak, A topological view of the replicon, EMBO Rep. 5 (3) (2004), 256–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. P. Serwer, Arrangement of double-stranded DNA packaged in bacteriophage capsids: An alternative model J. Mol. Biol. 190 (1986), pp. 509–512.

    CAS  PubMed  Google Scholar 

  83. S. Y. Shaw and J.C. Wang, Knotting of a DNA chain during ring closure, Science 260 (1993), pp. 533–536.

    CAS  PubMed  Google Scholar 

  84. Arciszewska, L.K. and D.J. Sherratt Site-specific recombination and circular chromosome segregation, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 347 (1995), pp. 37–42.

    PubMed  Google Scholar 

  85. K. Shimokawa, K. Ishihara, I. Grainge, D.J. Sherratt, and M. Vazquez, DNA unlinking by site-specific recombination: topological analysis of XerCD-FtsK action, Preliminary report.

    Google Scholar 

  86. W.M. Stark and M.R. Boocock, Topological selectivity in site-specific recombination, In Mobile Genetic Elements (Sherratt, D. J., ed.), IRL Press at Oxford University, Oxford (1995), pp. 101–129.

    Google Scholar 

  87. W.M. Stark, D.J. Sherratt, and M.R. Boocock, Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions, Cell 58 (1989), pp. 779–790.

    CAS  PubMed  Google Scholar 

  88. N. Strater, D.J. Sherratt, and S.D. Colloms, X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination., EMBO J. 18 (1999), pp. 4513–4522.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. D.K. Summers and D.J. Sherratt, Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability, Cell 36 (1984), pp. 1097–1103.

    CAS  PubMed  Google Scholar 

  90. D.W. Sumners, C. Ernst, N.R. Cozzarelli, and S.J. Spengler, Mathematical analysis of the mechanisms of DNA recombination using tangles, Quarterly Reviews of Biophysics 28 (1995), pp. 253–313.

    CAS  PubMed  Google Scholar 

  91. S. Trigueros, J. Arsuaga, M. Vazquez, D.W. Sumners, and J. Roca, Novel display of knotted DNA molecules by two dimensional gel electrophoresis, Nucleic Acids Research 29 (2001), e67.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. S. Trigueros and J. Roca, Production of highly knotted DNA by means of cosmid circularization inside phage capsids, BMC Biotechnol 7 (1) (2007), pp. 94.

    PubMed  PubMed Central  Google Scholar 

  93. S. Tzill, J.K. Kindt, W.M. Gelbart, and A. Ben-Shaul, Forces and Pressures in DNA Packaging and Release from Viral Capsids, Biophys. J. 84 (2003), pp. 1616–1627.

    Google Scholar 

  94. G.D. Van Duyne, A structural view of Cre-loxP site-specific recombination, Annu. Rev. Biophys. Biomol. Struct. 30 (2001), pp. 87–104.

    PubMed  Google Scholar 

  95. V. Vanhooff, C. Galloy, H. Agaisse, D. Lereclus, B. Revet, and B. Hallet, Self-Control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI, Molecular Microbiology 60(3) (2006), pp. 617–629.

    CAS  PubMed  Google Scholar 

  96. M.Vazquez, Tangle analysis of site-specific recombination: Gin and Xer systems, PhD dissertation in mathematics, Florida State University, Tallahassee, FL, 2000.

    Google Scholar 

  97. M. Vazquez, S.D. Colloms, and D.W. Sumners, Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single 3-dimensional topological pathway, J. Mol. Biol. 346 (2005), pp. 493–504.

    CAS  PubMed  Google Scholar 

  98. M. Vazquez and D.W. Sumners, Tangle analysis of Gin site-specific recombination, Math. Proc. Cambridge Phil. Soc. 136 (2004), pp. 565–582.

    Google Scholar 

  99. A.V. Vologodskii, N.J. Crisona, B. Laurie, P. Pieranski, V. Katritch, J. Dubochet, and A. Stasiak, Sedimentation and electrophoretic migration of DNA knots and catenanes, J. Mol. Biol. 278 (1998), pp. 1–3.

    CAS  PubMed  Google Scholar 

  100. S.A. Wasserman, J.M. Dungan, and N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229 (1985), pp. 171–174.

    CAS  PubMed  Google Scholar 

  101. W. Zheng, C. Galloy, B. Hallet, and M. Vazquez, The tangle model for site-specific recombination: a computer interface and the TnpI-IRS recombination system, Knot Theory for Specific Objects, OCAMI studies 1 (2) (2007), pp. 251–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Arsuaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Arsuaga, J., Diao, Y., Vazquez, M. (2009). Mathematical Methods in Dna Topology: Applications to Chromosome Organization and Site-Specific Recombination. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_2

Download citation

Publish with us

Policies and ethics