Skip to main content

Micromechanics of Single Supercoiled DNA Molecules

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 150))

Abstract

The theory of the mechanical response of single DNA molecules under stretching and twisting stresses is reviewed. Using established results for the the semiflexible polymer including the effect of torsional stress, and for the free energy of plectonemic supercoils, a theory of coexisting plectonemic and extended DNA is constructed and shown to produce phenomena observed experimentally. Analytical results for DNA extension and torque are presented, and effects of anharmonicities in the plectonemic free energy are described. An application of the theory to the problem of torsional-stress-induced cruciform extrusion is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, L. Finzi, and C. Bustamante, Science 258, 1122–1126 (1992).

    CAS  PubMed  Google Scholar 

  2. Bustamante, J.F. Marko, S. Smith, and E.D. Siggia, Science 265, 1599– 1600 (1994).

    Google Scholar 

  3. A.V. Vologodskii, Macromolecules 27, 5623–5625 (1994).

    CAS  Google Scholar 

  4. T. Odijk, Macromolecules 28, 7016–7018 (1995).

    CAS  Google Scholar 

  5. J.F. Marko and E.D. Siggia, Macromolecules 28, 8759–8770 (1995).

    CAS  Google Scholar 

  6. T.R. Strick, J.-F. Allem and, D. Bensimon, A. Bensimon, and V. Croquette, Science 271, 1835–1837 (1996).

    CAS  PubMed  Google Scholar 

  7. R. Strick, J.-F. Allem and, D. Bensimon, and V. Croquette, Biophys. J. 74, 2016–2028 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Strick, J.F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, Physica A 263, 392–404 (1999).

    CAS  Google Scholar 

  9. T.R. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Prog. Biophys. Mol. Biol. 74, 115–140 (2000).

    CAS  PubMed  Google Scholar 

  10. J.F. Marko and E.D. Siggia, Science 265, 506–508 (1994).

    CAS  PubMed  Google Scholar 

  11. J.F. Marko and E.D. Siggia, Phys. Rev. E. 52, 2912–2938 (1995).

    CAS  Google Scholar 

  12. J.F. Marko and A. Vologodskii, Biophys. J. 73 123–132 (1997).

    PubMed  PubMed Central  Google Scholar 

  13. B.Fain, J. Rudnick, and S. Ostlund, Phys. Rev. E 55, 7364–7368 (1997).

    CAS  Google Scholar 

  14. J.F. Marko, Phys. Rev. E 55, 1758–1772 (1997).

    CAS  Google Scholar 

  15. J.F. Marko, Phys. Rev. E 57, 2134–2149 (1998).

    CAS  Google Scholar 

  16. S.Neukirch, Phys. Rev. Lett. 93, 198107 (2004).

    Google Scholar 

  17. T.R. Strick, V. Croquette, and D. Bensimon, Nature 404, 901–904 (2000).

    CAS  PubMed  Google Scholar 

  18. N.J. Crisona, T.R. Strick, D. Bensimon, V. Croquette, and N.R. Cozzarelli, Genes. Dev. 14, 2881–2892 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. N.H. Dekker, V.V. Rybenkov, M. Duguet, N.J. Crisona, N.R. Cozzarelli, D.Bensimon, and V. Croquette, Proc. Natl. Acad. Sci. USA 99 12126–12131 (2002).

    CAS  PubMed  Google Scholar 

  20. G. Charvin, T.R. Strick, D. Bensimon, and V. Croquette, Biophys. J. 89 384–392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. D.A. Koster, V. Croquette, C. Dekker, S. Shuman, and N.H. Dekker, Nature 434 671–674 s(2005).

    CAS  PubMed  Google Scholar 

  22. N.H. Dekker, T. Viard, C.B.de la Tour, M. Duguet, D. Bensimon, and V. Croquette, J. Mol. Biol 329 271–282 (2003).

    CAS  PubMed  Google Scholar 

  23. B. Taneja, B. Schnurr, A. Slesarev, J.F. Marko, and A. Mondragon, Proc. Natl. Acad. Sci. USA 104, 14670–14675 (2007).

    CAS  PubMed  Google Scholar 

  24. Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, and C. Bustamante, Nature 424, 338–341 (2003).

    CAS  PubMed  Google Scholar 

  25. J. Gore, Z. Bryant, M.D. Stone, M.N. Nollmann, N.R. Cozzarelli, and C. Bustamante, Nature 439 100–104 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. C. Deufel, S. Forth, C.R. Simmons, S. Dejgosha, and M.D. Wang, Nature Methods 4 223–225 (2007).

    CAS  PubMed  Google Scholar 

  27. J.F. Marko, Phys. Rev. E 76, 021926 (2007).

    Google Scholar 

  28. J.F. Marko, in Les Houches Session LXXXII, Multiple aspects of DNA and RNA from biophysics to bioinformatics, ed. D. Chatenay et al., pp. 248–250 (Elsevier, San Diego CA, 2005).

    Google Scholar 

  29. P.J. Hagerman, Ann. Rev. Biophys. Biophys. Chem. 17 265–86 (1988).

    CAS  Google Scholar 

  30. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.L. Viovy, D. Chatenay, and F. Caron, Science 271, 792–794 (1996).

    CAS  PubMed  Google Scholar 

  31. S.B. Smith, Y. Cui, and C. Bustamante, Science 271, 795–9 (1996).

    CAS  PubMed  Google Scholar 

  32. R.W. Ogden, G. Saccomandi, and I. Sgura, Comp. Math. Appl. 53, 276–286 (2007).

    Google Scholar 

  33. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Ch. II (Pergamon, New York NY, 1986).

    Google Scholar 

  34. D.M. Crothers, J. Drak, J.D. Kahn, and S.D. Levene, Meth. Enzym. 212 3–29 (1992).

    CAS  PubMed  Google Scholar 

  35. V. Rossetto, Europhys. Lett. 69 142–148 (2005).

    CAS  Google Scholar 

  36. J.D. Moroz and P. Nelson, Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997)

    CAS  PubMed  Google Scholar 

  37. J.D. Moroz and P. Nelson, Macromolecules 31, 6333–6347 (1998).

    CAS  Google Scholar 

  38. J.F. Marko, Europhys. Lett. 38, 183–188 (1997).

    CAS  Google Scholar 

  39. R.D. Kamien, T.C. Lubensky, P. Nelson, and C.S. O’Hern, Europhys. Lett. 38, 237–242 (1997).

    CAS  Google Scholar 

  40. T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 96, 178102 (2006).

    PubMed  Google Scholar 

  41. J. Gore, Z. Bryant, M. Nollmann, M.U. Le, N.R. Cozzarelli, and C. Bustamante, Nature 442, 836–839 (2006).

    CAS  PubMed  Google Scholar 

  42. A.V. Vologodskii, S.D. Levene, K.V. Klenin, M. Frank-Kamenetskii, and N.R. Cozzarelli, J. Mol. Biol. 227, 1224–1243 (1992).

    CAS  PubMed  Google Scholar 

  43. W. Bauer and J. Vinograd, J. Mol. Biol. 47, 419–35 (1970).

    CAS  PubMed  Google Scholar 

  44. K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, and M.D.Frank-Kamenetskii, J. Mol. Biol. 217, 413–419 (1991).

    CAS  PubMed  Google Scholar 

  45. V.V. Rybenkov, A.V. Vologodkskii, and N.R. Cozzarelli, Nucl. Acids Res. 25 1412–1418 (1997).

    CAS  PubMed  Google Scholar 

  46. A.E.H. Love, A Treatise on the mathematical theory of elasticity, pp. 417–419 (Dover, New York NY, 1944)

    Google Scholar 

  47. A. Sarkar, J.F. Léger, D. Chatenay, and J.F. Marko, Phys. Rev. E 63 051903 (2001).

    CAS  Google Scholar 

  48. S. Cocco, J. Yan, J.F. Léger, D. Chatenay, and J.F. Marko, Phys. Rev. E 70 011910 (2004).

    Google Scholar 

  49. J.F. Allemand, D. Bensimon, and V. Croquette, Proc. Natl. Acad. Sci. USA 95, 14152–14157 (1998).

    CAS  PubMed  Google Scholar 

  50. T.R. Strick, V. Croquette, and D. Bensimon, Proc. Natl. Acad. Sci. USA 95 10579–10583 (1998).

    CAS  PubMed  Google Scholar 

  51. S. Kutter and E.M. Terentjev, Eur. J. Phys. B 21, 455–462 (2001); S. Kutter, Ph.D. Thesis, (University of Cambridge, England UK, 2002).

    Google Scholar 

  52. A. Dawid, F. Guillemot, C. Breème, V. Croquette, and F. Heslot, Phys. ev. Lett. 96, 188102 (2006).

    Google Scholar 

  53. J. Yan and J.F. Marko, Phys. Rev. E 68, 011905 (2003).

    Google Scholar 

  54. S. Cocco, J.F. Marko, R. Monasson, A. Sarkar, and J. Yan, Eur. Phys. J. E 10, 249–263 (2003)

    CAS  PubMed  Google Scholar 

  55. B. Schnurr, C. Vorgias, and J. Stavans, Biophys. Rev. Lett. 1, 29–44 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Marko, J.F. (2009). Micromechanics of Single Supercoiled DNA Molecules. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_12

Download citation

Publish with us

Policies and ethics