Advertisement

Mackey, Harish-Chandra, and representation theory

  • V. S. Varadarajan
Chapter

Abstract

Some personal reminiscences of Mackey and Harish-Chandra together with brief comments on their work.

Keywords

Representation Theory Unitary Representation Cusp Form Discrete Series Semi Direct Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1a]
    R. S. Doran, C. C. Moore, and R. S. Zimmer, (Eds.), George Mackey and his work on representation theory and foundations of physics. Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, 417446, Contemp. Math., 449, Amer. Math. Soc., Providence, RI, 2008.Google Scholar
  2. [1b]
    R. S. Doran, and A. Ramsay,George Mackey 1916–2006, Notices of the Amer. math. Soc., 54(2007), 824–850.MathSciNetMATHGoogle Scholar
  3. [2]
    C. Carmeli, G. Cassinelli, A. Toigo, and V. S. Varadarajan, Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles, Comm. Math. Phys., 263(2006), 217–258.MathSciNetMATHCrossRefGoogle Scholar
  4. [3]
    H. Salmasian,Unitary representations of nilpotent super Lie groups, Comm. Math. Phys., 297(2010), 189–227.MathSciNetMATHCrossRefGoogle Scholar
  5. [4]
    C. C. Moore, Group extensions of p-adic and adelic linear groups, Pub. Math. IHES, 35(1968), 5–70.MATHGoogle Scholar
  6. [5]
    R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984.Google Scholar
  7. [6]
    R. Howe, On a notion of rank for unitary representations of the classical groups, Harmonic analysis and grouprepresentations, 223–331, Liguori, Naples, 1982.Google Scholar
  8. [7a]
    J,-S. Li, On the classification of irreducible low rank unitary representations of classical groups, Compositio Math. 71 (1989), no. 1, 29–48.Google Scholar
  9. [7b]
    H. Salamsian, A notion of rank for unitary representations of reductive groups based on Kirillov’s orbit method. Duke Math. Jour. 136 (2007), 1–49.Google Scholar
  10. [8]
    V. S. Varadarajan, Some mathematical reminiscences, Methods Appl. Anal. 9 (2002) v-xviii.Google Scholar
  11. [9]
    V. S. Varadarajan, Harish-Chandra, HisWork, and its Legacy, in The Mathematical Legacy of Harish-Chandra, 1–35, R. S. Doran, and V. S. Varadarajan, (Eds.), Amer. Math. Soc., Proc. Symp. in Pure Math., Vol. 68, 2000.Google Scholar
  12. [10]
    P. C. Trombi, and V. S. Varadarajan,Spherical transforms of semisimple Lie groups, Ann. of Math. (2) 94(1971), 246–303.MathSciNetCrossRefGoogle Scholar
  13. [11]
    P. C. Trombi, and V. S. Varadarajan, Asymptotic behaviour of eigen functions on a semisimple Lie group: the discrete spectrum, Acta. Math. 129 (1972), 237–280.MathSciNetMATHCrossRefGoogle Scholar
  14. [12]
    J. A. C. Kolk, and V. S. Varadarajan, On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.) 7 (1996), 67–96.Google Scholar
  15. [13]
    Harish-Chandra Collected Papers, Vol. IV., [1970c], Springer-Verlag, 1984.Google Scholar
  16. [14]
    Harish-Chandra Collected Papers, Vol. I., [1964a]-[1966b], Springer -Verlag, 1984.Google Scholar
  17. [15a]
    Harish-Chandra Collected Papers, Vol. IV., [1973], Springer -Verlag, 1984.Google Scholar
  18. [15b]
    Harish-Chandra Collected Papers, Vol. IV., [1977b] [1977b’], Springer -Verlag, 1984.Google Scholar
  19. [16]
    Harish-Chandra Collected Papers, Vol. III., [1963], Springer -Verlag, 1984.Google Scholar
  20. [17]
    Harish-Chandra Collected Papers, Vol. III., [1968a], Springer -Verlag, 1984.Google Scholar
  21. [18]
    Harish-Chandra, My association with Professor Dirac, in Reminiscences about a great physicist: Paul Adrien Maurice Dirac, 34–36, B. N. Kursunoglu, and E. P. Wigner, (Eds.), Cambridge Univ. Press, Cambridge, 1987.Google Scholar
  22. [19]
    The Mathematical Legacy of Harish-Chandra, R. S. Doran, and V. S. Varadarajan, (Eds.), Amer. Math. Soc., Proc. Symp. in Pure Math., Vol. 68, 2000.Google Scholar
  23. [20a]
    Harish-Chandra Collected Papers, Vol. I., [1951f], Springer -Verlag, 1984.Google Scholar
  24. [20b]
    Harish-Chandra Collected Papers, Vol. I., [1952], Springer -Verlag, 1984.Google Scholar
  25. [21]
    Harish-Chandra Collected Papers, Vol. I., [1954e], Springer -Verlag, 1984.Google Scholar
  26. [22]
    Harish-Chandra Collected Papers, Vol. I., [1956a], Springer -Verlag, 1984.Google Scholar
  27. [23]
    H. Weyl, Gesammelte Abhandlungen, Band I, 248–297. Springer-Verlag, 1968.Google Scholar
  28. [24]
    Harish-Chandra Collected Papers, Vol. I., [1958a] [1958b], Springer -Verlag, 1984.Google Scholar
  29. [25]
    Harish-Chandra Collected Papers, Vol. I., [1968b], Springer -Verlag, 1984.Google Scholar
  30. [26a]
    Harish-Chandra Collected Papers, Vol. I., Springer -Verlag, 1984.Google Scholar
  31. [26b]
    V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Springer Lecture Notes in Mathematics No., 576, Springer-Verlag, 1977.Google Scholar
  32. [27a]
    Lie Theory Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems, J-P. Anker, B. Orsted (Eds.), Progress in Math. 230, Birkhauser, Boston, 2005. See in the same volumeGoogle Scholar
  33. [27b]
    E. P. Van den Ban, The Plancherel theorem for a reductive symmetric space, loc. cit., 1–97; see also http://www.math.uu.nl/people/ban/manus/banesgt.ps

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. S. Varadarajan
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations