Skip to main content
  • 1353 Accesses

Abstract

Quantum algebra was created by Dirac. Its evolution also bears the imprint of the genius of many great mathematicians and physicists such as Weyl, von Neumann, Schwinger, Moyal, Flato, and others. It has inspired developments in deformation theory, representation theory, quantum groups, and many other mathematical themes.

This essay and the next are based on lectures given at Howard University, Washington D.C., sponsored by my friend D. Sundararaman, in the 1990s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. M. Dirac, Proc. Roy. Soc. A 109 (1925), 642–653.

    Google Scholar 

  2. B. L. van der Waerden, Sources of Quantum Mechanics, Dover, 1967, 307–320; this source book will be referred to as SQM.

    Google Scholar 

  3. W. Heisenberg, Zeit. Phys. 33 (1925), 879–893; see also SQM, 261–276.

    Google Scholar 

  4. M. Born and P. Jordan, Zeit. Phys. 34 (1925), 858–888; SQM, 277–306.

    Google Scholar 

  5. M. Born, W. Heisenberg, and P. Jordan, Zeit. Phys. 35 (1926), 557–615.

    Google Scholar 

  6. SQM, 53–54, Letter to Pauli.

    Google Scholar 

  7. H. Weyl, Theory of Groups and Quantum Mechanics, Dover, 1931. Weyl’s ideas were first published in H. Weyl, Zeit. Phys. 46 (1927), 1–46.

    Google Scholar 

  8. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.

    Google Scholar 

  9. V. S. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, 1985.

    Google Scholar 

  10. V. S. Varadarajan, Int. Jour. Theor. Phys. 32 (1993), 1815–1834.

    Google Scholar 

  11. E. G. Beltrametti, and G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Mathematics and its Applications, Vol 15, Addison-Wesley, 1981.

    Google Scholar 

  12. B. C. Van Fraassen, Quantum Mechanics, Oxford, 1991.

    Google Scholar 

  13. G. Birkhoff and J. Von Neumann, Ann. Math. 37 (1936), 823–843.

    Google Scholar 

  14. G. Cassinelli, E. De Vito, P. Lahti, and A. Levrero, Rev. Math. Phys. 9 (1997), 921–941.

    Google Scholar 

  15. J. Schwinger, Proc. Nat. Acad. Sci. USA 45 (1959), 1542–1553; see also Selected papers (1937–1976) of Julian Schwinger, M. Flato, C. Fronsdal, K. A. Milton (eds), D. Reidel Publishing Company, Boston, 127–138. See also the beautiful book of Schwinger, especially the Prologue: J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurements, Ed. Berthold-Georg Englert, Springer, 2001.

    Google Scholar 

  16. J. Schwinger, Quantum Kinematics and Dynamics, W. A. Benjamin, New York, 1970.

    Google Scholar 

  17. J. Schwinger, Hermann Weyl and quantum kinematics, in Exact Sciences and Their Philosophical Foundations, Verlag Peter Lang, Frankfurt, 1988, 107–129.

    Google Scholar 

  18. L. Accardi, Nuovo Cimento, 110 (1995), 685–721.

    Google Scholar 

  19. G. W. Mackey, Unitary group Representations in Physics, Probability, and Number theory, Benjamin, 1978.

    Google Scholar 

  20. J. Schwinger, Proc. Nat. Acad. Sci. USA, 46 (1960), 570–579.

    Google Scholar 

  21. E. Husstad, Endeligdimensjonale approksimasjoner til kvantesystemer, Thesis, University of Trondheim, 1991/92.

    Google Scholar 

  22. T. Digernes, V. S. Varadarajan, and S. R. S. Varadhan, Rev. Math. Phys. 6 (1994), 621–648.

    Google Scholar 

  23. M. H. Stone, Linear transformations in Hilbert Space. III. Operational methods and group theory, Proc. Nat. Acad. Sci. USA, 16, (1930), 172–175.

    Google Scholar 

  24. J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann., 104 (1931), 570–578.

    Google Scholar 

  25. V. S. Varadarajan, in Analysis, Geometry, and probability, Rajendra Bhatia (ed), Hindustan Book Agency, New Delhi, 1996, 362–396. For Mackey’s paper see Duke Math. Jour. 16 (1949), 313–326, and also the book Tata Lectures on Theta III by D. Mumford with Madhav Nori and Peter Norman, Birkhäuser,Basal, 1991, pp. 1–14.

    Google Scholar 

  26. V. S. Varadarajan, Lett. Math. Phys. 34 (1995), 319–326.

    Google Scholar 

  27. J. E. Moyal, Proc. Camb. Phil. Soc. 45 (1949), 99–124.

    Google Scholar 

  28. F. Bayen, M. Flato, M, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Quantum mechanics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1975/77), no. 6, 521–530.

    Google Scholar 

  29. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), no. 1,61–110.

    Google Scholar 

  30. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. II. Physical applications, Ann. Physics 111 (1978), no. 1, 111–151.

    Google Scholar 

  31. H. Basart, M. Flato, A. Lichnerowicz, and D. Sternheimer, Deformation theory applied to quantization and statistical physics, Lett. Math. Phys. 8(1984), 483–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Varadarajan, V.S. (2011). Quantum Algebra. In: Reflections on Quanta, Symmetries, and Supersymmetries. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0667-0_2

Download citation

Publish with us

Policies and ethics