Applications of Thin Film Oxides in Catalysis

  • Su Ying Quek
  • Efthimios Kaxiras


Metal oxides are fundamentally important as heterogeneous catalysts – either as stand-alone catalysts or in combination with other oxides and/or metals. In this chapter, we focus on how the use of thin film metal oxides, in lieu of bulk oxides, can potentially enhance catalytic activity. We illustrate this concept with two examples. In the first example, we discuss a molybdenum trioxide monolayered structure that can be grown on the gold (111) surface. In contrast to the bulk molybdenum trioxide that is composed of bilayers, this oxide monolayer is semimetallic and has distinct chemical properties. In the second example, we propose that ultrathin oxide layers can enable the coupling of structural distortions and charge transfer beyond that allowed in the bulk, and that ultrathin oxide supports can play a dynamic, active, role in promoting catalysis in supported metal catalysts.


Scanning Tunneling Microscopy Image Bulk Oxide Molybdenum Trioxide Charge Density Difference Herringbone Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge Prof. C.M. Friend for numerous discussions that have shaped our understanding of the systems discussed here, as part of a collaboration with her group. We are also indebted to several members of the Friend group for sharing with us experimental results and knowledge, including M.M. Biener and J. Biener for the STM images in Figs. 9.2 and 9.4a (originally published in Ref. [27]); X. Deng for valuable discussions; D.-H. Kang for the electron energy loss spectroscopy spectra discussed in Sect. 9.2 (originally published in Ref. [27]). Finally, we thank Prof. D.W. Goodman, B.K. Min, and M.-S. Chen for initial communications that motivated our work presented in Sect. 9.3 (originally published in Ref. [ 53]).

The present work was supported in part by the National Computational Science Alliance under DMR030044, and by the Harvard NNIN/C. SYQ acknowledges support from the Agency of Science, Technology and Research (Singapore), and current support from the Molecular Foundry by the Office of Science, Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02–05CH11231.


  1. 1.
    Friend CM, Queeney KT, Chen DA (1999) Appl Surf Sci 142(1–4):99.CrossRefGoogle Scholar
  2. 2.
    Trovarelli A, de Leitenburg C, Boaro M et al (1999) Catal Today 50(2):353.CrossRefGoogle Scholar
  3. 3.
    Chen M, Friend CM, Kaxiras E (2001) J Am Chem Soc 123(10):2224.CrossRefGoogle Scholar
  4. 4.
    Vittadini A, Casarin M, Sambi M et al (2005) J Phys Chem B 109(46):21766.CrossRefGoogle Scholar
  5. 5.
    Over H, Muhler M (2003) ProgSurf Sci 72(1–4):3.Google Scholar
  6. 6.
    Hammer B (2006) Topic Catal 37(1):3.CrossRefGoogle Scholar
  7. 7.
    Somorjai GA (2008) Topic Catal 48(1–4):1; Somorjai GA, Tao F, Park JY (2008) Topic Catal 47(1–2):1.Google Scholar
  8. 8.
    Polarz S, Strunk J, Ischenko V et al (2006) Angew Chem Int Edit 45(18):2965.CrossRefGoogle Scholar
  9. 9.
    Chen MS, Goodman DW (2004) Science 306(5694):252.CrossRefGoogle Scholar
  10. 10.
    Fu Q, Wagner T (2005) Surf Sci 574(2–3):L29.CrossRefGoogle Scholar
  11. 11.
    Parravano G (1952) J Chem Phys 20(2):342; Kolpak AM, Grinberg I, Rappe AM (2007) Phys Rev Lett 98(16):4.Google Scholar
  12. 12.
    Chen MS, Goodman DW (2008) J Phys-Conden Matt 20(26):11.Google Scholar
  13. 13.
    Kan HH, Weaver JF (2008) Surf Sci 602(9):L53; Middeke J, Blum RP, Hafemeister M et al (2005) Surf Sci 587(3):219.Google Scholar
  14. 14.
    Chambers SA (2000) Surf Sci Rep 39(5–6):105.CrossRefGoogle Scholar
  15. 15.
    Ressler T, Walter A, Huang ZD et al (2008) J Catal 254(2):170.CrossRefGoogle Scholar
  16. 16.
    Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Technol A 23(6):1487.CrossRefGoogle Scholar
  17. 17.
    Freund HJ (2007) Surf Sci 601(6):1438.CrossRefGoogle Scholar
  18. 18.
    Fu Q, Wagner T (2007) Surf Sci Rep 62(11):431.CrossRefGoogle Scholar
  19. 19.
    Giordano L, Pacchioni G (2006) Phys Chemistry Chem Phys 8(28):3335; Pacchioni G, Giordano L, Baistrocchi M (2005) Phys Rev Lett 94(22):4.Google Scholar
  20. 20.
    Yoon B, Hakkinen H, Landman U et al (2005) Science 307(5708):403.CrossRefGoogle Scholar
  21. 21.
    Queeney K, Friend CM (2000) Chemphyschem 1(3):116.CrossRefGoogle Scholar
  22. 22.
    Spencer PJ (1986) United States Patent.Google Scholar
  23. 23.
    Haber J, Lalik E (1997) Catal Today 33:119.CrossRefGoogle Scholar
  24. 24.
    Nart FC, Friend CM (2001) J Phys Chem B 105(14):2773.CrossRefGoogle Scholar
  25. 25.
    Remediakis IN, Kaxiras E, Chen M et al (2003) J Chem Phys 118(13):6046.CrossRefGoogle Scholar
  26. 26.
    Chen M, Waghmare UV, Friend CM et al (1998) J Chem Phys 109(16):6854.CrossRefGoogle Scholar
  27. 27.
    Quek SY, Biener MM, Biener J et al (2005) Surf Sci 577(2–3):L71.CrossRefGoogle Scholar
  28. 28.
    Biener MM, Friend CM (2004) Surf Sci 559:L173; Biener MM, Biener J, Schalek R, Friend CM (2004) J Chem Phys 121(23):12010.Google Scholar
  29. 29.
    Kihlborg L (1963) Arkiv Kemi 21:357.Google Scholar
  30. 30.
    Barth JV, Brune H, Ertl G, Behm RJ (1990) Phys Rev B 42(15):9307.CrossRefGoogle Scholar
  31. 31.
    Blochl PE (1994) Phys Rev B 50(24):17953.CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Wang Y (1992) Phys Rev B 45(23):13244.CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169.CrossRefGoogle Scholar
  34. 34.
    Tersoff J, Hamann DR (1983) Phys Rev Lett 50(25):1998.CrossRefGoogle Scholar
  35. 35.
    Ibach H, Mills DL (1982) Electron energy loss spectroscopy and surface vibrations. Academic Press, New York, NY.Google Scholar
  36. 36.
    Papakondylis A, Sautet P (1996) J Phys Chem 100(25):10681.CrossRefGoogle Scholar
  37. 37.
    Overbury SH, Bertrand PA, Somorjai GA (1975) Chem Rev 75(5):547.CrossRefGoogle Scholar
  38. 38.
    Mezey LZ, Giber J (1982) Jpn J Appl Phys 21:1569.CrossRefGoogle Scholar
  39. 39.
    El-Batanouny M, Burdick S, Martini KM, Stancioff P (1987) Phys Rev Lett 58(26):2762.CrossRefGoogle Scholar
  40. 40.
    Cai T, Song Z, Chang Z, Liu G, Rodriguez JA, Hrbek J (2003) J Am Chem Soc 125:8059.CrossRefGoogle Scholar
  41. 41.
    Surnev S, Kresse G, Ramsey MG, Netzer FP (2001) Phys Rev Lett 87(8):086102.CrossRefGoogle Scholar
  42. 42.
    Liu ZP, Gong XQ, Kohanoff J et al (2003) Phys Rev Lett 91(26):266102.CrossRefGoogle Scholar
  43. 43.
    Molina LM, Rasmussen MD, Hammer B (2004) J Chem Phys 120(16):7673.CrossRefGoogle Scholar
  44. 44.
    Wang JG, Hammer B (2007) Topic Catal 44(1–2):49; Laursen S, Linic S (2006) Phys Rev Lett 97(2):4.Google Scholar
  45. 45.
    Liu ZP, Jenkins SJ, King DA (2005) Phys Rev Lett 94(19):196102.CrossRefGoogle Scholar
  46. 46.
    Xu Y, Mavrikakis M (2003) J Phys Chem B 107(35):9298.CrossRefGoogle Scholar
  47. 47.
    Mavrikakis M, Stoltze P, Nørskov JK (2000) Catal Lett 64(2–4):101.CrossRefGoogle Scholar
  48. 48.
    Goodman DW (2005) Catal Lett 99(1–2):1.CrossRefGoogle Scholar
  49. 49.
    Haruta M, Tsubota S, Kobayashi T et al (1993) J Catal 144(1):175.CrossRefGoogle Scholar
  50. 50.
    Remediakis IN, Lopez N, Nørskov JK (2005) Angew Chem Int Edit 44:1824; Lopez N, Janssens TVW, Clausen BS et al (2004) J Catal 223(1):232.Google Scholar
  51. 51.
    Mills G, Gordon MS, Metiu H (2003) J Chem Phys 118(9):4198.CrossRefGoogle Scholar
  52. 52.
    Hakkinen H, Abbet W, Sanchez A et al (2003) Angew Chem Int Edit 42(11):1297.CrossRefGoogle Scholar
  53. 53.
    Quek SY, Friend CM, Kaxiras E (2006) Surf Sci 600(17):3388.CrossRefGoogle Scholar
  54. 54.
    Surnev S, Kresse G, Ramsey MG et al (2001) Phys Rev Lett 87(8):086102.CrossRefGoogle Scholar
  55. 55.
    Wahlstrom E, Lopez N, Schaub R et al (2003) Phys Rev Lett 90(2):026101.CrossRefGoogle Scholar
  56. 56.
    Campbell CT (2004) Science 306(5694):234.CrossRefGoogle Scholar
  57. 57.
    Bondzie VA, Parker SC, Campbell CT (1999) Catal Lett 63(3–4):143.CrossRefGoogle Scholar
  58. 58.
    Chen MS, Wallace WT, Kumar D et al (2005) Surf Sci 581(2–3):L115.CrossRefGoogle Scholar
  59. 59.
    Giorgio S, Henry CR, Pauwels B et al (2001) Mat Sci Eng A-Struct 297(1–2):197.CrossRefGoogle Scholar
  60. 60.
    Lopez N, Nørskov JK, Janssens TVW et al (2004) J Catal 225(1):86.CrossRefGoogle Scholar
  61. 61.
    Sanchez A, Abbet S, Heiz U et al (1999) J Phys Chem A 103(48):9573.CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865.CrossRefGoogle Scholar
  63. 63.
    Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, New York; Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mat Sci 36:254.Google Scholar
  64. 64.
    Rodriguez JA, Liu G, Jirsak T et al (2002) J Am Chem Soc 124(18):5242.CrossRefGoogle Scholar
  65. 65.
    Rodriguez JA, Hrbek J, Chang Z et al (2002) Phys Rev B 65(23):235414.CrossRefGoogle Scholar
  66. 66.
    Bond GC, Thompson DT (1999) Catal Rev-Sci Eng 41(3–4):319.CrossRefGoogle Scholar
  67. 67.
    Valden M, Lai X, Goodman DW (1998) Science 281(5383):1647.CrossRefGoogle Scholar
  68. 68.
    Biener J, Farfan-Arribas E, Biener M et al (2005), J Chem Phys 123:094705.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.School of Engineering, Ecole Polytechnique Federale De LausanneLausaunneSwitzerland

Personalised recommendations