Mesostructured Thin Film Oxides

  • Galen D. Stucky
  • Michael H. Bartl


The chapter on “Mesostructured Thin Film Oxides” addressed three main topics. The first is a brief introduction to mesostructured materials, focusing on mesostructure assembly and general synthesis and processing considerations as well as properties and characteristics of periodically ordered mesostructured materials with an emphasis on thin film oxides is given. In the second part, periodically organized transition metal oxide thin films with nanocrystalline mesostructure frameworks are discussed, including the assembly/nanocrystallization chemistry behind such inherently functional porous thin films, using mesostructured semiconducting anatase titania as a general example. A particular challenge is how to combine a three-dimensional ordered porous structure with a high degree of framework crystallinity. The third part focuses on recent promising applications of periodically organized multi-compositional mesostructured transition metal oxide-based thin films and is divided into the areas of (1) optical, electrical, and electrochemical applications, (2) photocatalytic and electrochromic applications and (3) photovoltaic/solar cell applications. The chapter ends with some conclusions and a brief outlook on the potential and promise of mesostructured thin film oxides as future low-cost solar energy conversion materials and photocatalysts.


Photocatalytic Activity Transition Metal Oxide Solar Energy Conversion Amorphous Titania Mesoporous Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395:881CrossRefGoogle Scholar
  2. 2.
    Kraus T, Malaquin L, Schmid H, Riess W, Spencer ND, Wolf H (2007) Nanoparticle printing with single-particle resolution. Nature Nanotechnol. 2:570CrossRefGoogle Scholar
  3. 3.
    Bartl MH, Boettcher SW, Frindell KL, Stucky GD (2005) 3-D molecular assembly of function in titania-based composite material systems. Acc. Chem. Res. 38:263CrossRefGoogle Scholar
  4. 4.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813CrossRefGoogle Scholar
  5. 5.
    Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20:682CrossRefGoogle Scholar
  6. 6.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13:3140CrossRefGoogle Scholar
  7. 7.
    Stucky GD, Huo Q, Firouzi A, Chmelka BF, Schacht S, Voigt-Martin IG, Schuth F (eds) (1997) Progress in zeolite and microporous materials, studies in surface science and catalysis, Chon H, Ihm S-K, Uh YS (eds) vol. 105. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Soler-illia GJD, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102:4093CrossRefGoogle Scholar
  9. 9.
    Davis ME, Lobo RF (1992) Zeolite and molecular-sieve synthesis. Chem. Mater. 4:756CrossRefGoogle Scholar
  10. 10.
    Schuth F, Schmidt W (2002) Microporous and mesoporous materials. Adv. Mater. 14:629CrossRefGoogle Scholar
  11. 11.
    Galusha JW, Tsung CK, Stucky GD, Bartl MH (2008) Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals. Chem. Mater. 20:4925CrossRefGoogle Scholar
  12. 12.
    Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538CrossRefGoogle Scholar
  13. 13.
    Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948CrossRefGoogle Scholar
  14. 14.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114:10834CrossRefGoogle Scholar
  15. 15.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710CrossRefGoogle Scholar
  16. 16.
    Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD (1994) Generalized synthesis of periodic surfactant inorganic composite materials. Nature 368:317CrossRefGoogle Scholar
  17. 17.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152CrossRefGoogle Scholar
  18. 18.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548CrossRefGoogle Scholar
  19. 19.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242CrossRefGoogle Scholar
  20. 20.
    Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865CrossRefGoogle Scholar
  21. 21.
    Attard GS, Glyde JC, Goltner CG (1995) Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378:366CrossRefGoogle Scholar
  22. 22.
    Goltner CG, Antonietti M (1997) Mesoporous materials by templating of liquid crystalline phases. Adv. Mater. 9:431CrossRefGoogle Scholar
  23. 23.
    Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299CrossRefGoogle Scholar
  24. 24.
    Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138CrossRefGoogle Scholar
  25. 25.
    Sakamoto YH, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shim HJ, Ryoo R (2000) Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408:449CrossRefGoogle Scholar
  26. 26.
    Behrens P (1996) Voids in variable chemical surroundings – mesoporous metal oxides. Angew. Chem. Int. Ed. Engl. 35:515CrossRefGoogle Scholar
  27. 27.
    Khushalani D, Dag O, Ozin GA, Kuperman A (1999) Glycometallate surfactants. Part 2: non-aqueous synthesis of mesoporous titanium, zirconium and niobium oxides. J. Mater. Chem. 9:1491Google Scholar
  28. 28.
    Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 38:56CrossRefGoogle Scholar
  29. 29.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97:2373CrossRefGoogle Scholar
  30. 30.
    Yang PD, Deng T, Zhao DY, Feng PY, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282:2244Google Scholar
  31. 31.
    Yang PD, Wirnsberger G, Huang HC, Cordero SR, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka BF, Buratto SK, Stucky GD (2000) Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 287:465CrossRefGoogle Scholar
  32. 32.
    Fan HY, Lu YF, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405:56CrossRefGoogle Scholar
  33. 33.
    Choi K-S, Lichtenegger HC, Stucky GD, McFarland EW (2002) Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces. J. Am. Chem. Soc. 124:12402CrossRefGoogle Scholar
  34. 34.
    Brown KER, Choi K-S (2006) Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films. Chem. Commun. 3311Google Scholar
  35. 35.
    Spray RL, Choi K-S (2007) Electrochemical synthesis of SnO2 films containing three-dimensionally organized uniform mesopores via interfacial surfactant templating. Chem. Commun. 3655Google Scholar
  36. 36.
    Tan Y, Srinivasan S, Choi K-S (2005) Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions. J. Am. Chem. Soc. 127:3596CrossRefGoogle Scholar
  37. 37.
    Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Biomimetic pathways for assembling inorganic thin films. Science 273:892CrossRefGoogle Scholar
  38. 38.
    Ryoo R, Ko CH, Cho SJ, Kim JM (1997) Optically transparent, single-crystal-like oriented mesoporous silica films and plates. J. Phys. Chem. B 101:10610CrossRefGoogle Scholar
  39. 39.
    Tolbert SH, Schaffer TE, Feng JL, Hansma PK, Stucky GD (1997) A new phase of oriented mesoporous silicate thin films. Chem. Mater. 9:1962CrossRefGoogle Scholar
  40. 40.
    Yang H, Coombs N, Sokolov I, Ozin GA (1996) Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature 381:589CrossRefGoogle Scholar
  41. 41.
    Yang H, Kuperman A, Coombs N, Mamicheafara S, Ozin GA (1996) Synthesis of oriented films of mesoporous silica on mica. Nature 379:703CrossRefGoogle Scholar
  42. 42.
    Brinker CJ, Lu YF, Sellinger A, Fan HY (1999) Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11:579CrossRefGoogle Scholar
  43. 43.
    Lu YF, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong WL, Guo YX, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature 389:364CrossRefGoogle Scholar
  44. 44.
    Grosso D, Cagnol F, Soler-Ilia G, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14:309CrossRefGoogle Scholar
  45. 45.
    Wirnsberger G, Yang PD, Scott BJ, Chmelka BF, Stucky GD (2001) Mesostructured materials for optical applications: From low-k dielectrics to sensors and lasers.Spectrochim. Acta A 57:2049Google Scholar
  46. 46.
    Bartl MH, Scott BJ, Wirnsberger G, Popitsch A, Stucky GD (2003) Single-photon hot band absorption induced anti-Stokes luminescence of rhodamine 101 in mesostructured thin films. Chemphyschem 4:392CrossRefGoogle Scholar
  47. 47.
    Marlow F (2000) Optical materials based on nanoscaled guest/host composites. Mol. Cryst. Liq. Cryst. 341:289CrossRefGoogle Scholar
  48. 48.
    Wirnsberger G, Stucky GD (2000) Ordered mesostructured materials with optical functionality. Chemphyschem 1:90CrossRefGoogle Scholar
  49. 49.
    Coakley KM, Liu YX, McGehee MD, Frindell KL, Stucky GD (2003) Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater. 13:301CrossRefGoogle Scholar
  50. 50.
    Sanchez C, Soler-Illia G, Ribot F, Grosso D (2003) Design of functional nano-structured materials through the use of controlled hybrid organic-inorganic interfaces. C. R. Chim. 6:1131CrossRefGoogle Scholar
  51. 51.
    Tang J, Wu YY, McFarland EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chem. Commun. 1670Google Scholar
  52. 52.
    Anpo M, Takeuchi M, Ikeue K, Dohshi S (2002) Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Curr. Opin. Sol. State Mater. Sci. 6:381Google Scholar
  53. 53.
    Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles – size quantization or direct transitions in this indirect semiconductor. J. Phys. Chem. 99:16646CrossRefGoogle Scholar
  54. 54.
    Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14:3284CrossRefGoogle Scholar
  55. 55.
    Antonelli DM (1999) Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants. Microporous Mesoporous Mater. 30:315CrossRefGoogle Scholar
  56. 56.
    Bartl MH, Boettcher SW, Hu EL, Stucky GD (2004) Dye-activated hybrid organic/inorganic mesostructured titania waveguides. J. Am. Chem. Soc. 126:10826CrossRefGoogle Scholar
  57. 57.
    Crepaldi EL, Soler-Illia G, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 125:9770CrossRefGoogle Scholar
  58. 58.
    Grosso D, Soler-Iliia G, Babonneau F, Sanchez C, Albouy P, Brunet-Bruneau A, A. Balkenende (2001) Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv. Mater. 13:1085CrossRefGoogle Scholar
  59. 59.
    Hwang YK, Lee KC, Kwon YU (2001) Nanoparticle routes to mesoporous titania thin films. Chemical Commun. 1738Google Scholar
  60. 60.
    Tian BZ, Liu XY, Tu B, Yu CZ, Fan J, Wang LM, Xie SH, Stucky GD, Zhao DY (2003) Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater. 2:159CrossRefGoogle Scholar
  61. 61.
    Yun HS, Miyazawa K, Zhou HS, Honma I, Kuwabara M (2001) Synthesis of mesoporous thin TiO2 films with hexagonal pore structures using triblock copolymer templates. Adv. Mater. 13:1377CrossRefGoogle Scholar
  62. 62.
    Fan J, Boettcher SW, Stucky GD (2006) Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem. Mater. 18:6391CrossRefGoogle Scholar
  63. 63.
    Frindell KL, Bartl MH, Popitsch A, Stucky GD (2002) Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem. Int. Ed. 41:959CrossRefGoogle Scholar
  64. 64.
    Frindell KL, Bartl MH, Robinson MR, Bazan GC, Popitsch A, Stucky GD (2003) Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. J. Sol. State Chem. 172:81CrossRefGoogle Scholar
  65. 65.
    Frindell KL, Tang J, Harreld JH, Stucky GD (2004) Enhanced mesostructural order and changes to optical and electrochemical properties induced by the addition of cerium(III) to mesoporous titania thin films. Chem. Mater. 16:3524CrossRefGoogle Scholar
  66. 66.
    Reiman KH, Brace KM, Gordon-Smith TJ, Nandhakumar I, Attard GS, Owen JR (2006) Lithium insertion into TiO2 from aqueous solution – facilitated by nanostructure. Electrochem. Commun. 8:517CrossRefGoogle Scholar
  67. 67.
    Sallard S, Brezesinski T, Smarsly BM (2007) Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J. Phys. Chem. C 111:7200CrossRefGoogle Scholar
  68. 68.
    Fattakhova-Rohfing D, Brezesinski T, Rathousky J, Feldhoff A, Oekermann T, Wark M, Smarsly B (2006) Transparent conducting films of indium tin oxide with 3D mesopore architecture. Adv. Mater. 18:2980CrossRefGoogle Scholar
  69. 69.
    Martinez-Ferrero E, Sakatani Y, Boissiere C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts. Adv. Funct. Mater. 17:3348CrossRefGoogle Scholar
  70. 70.
    Bartl MH, Puls SP, Tang J, Lichtenegger HC, Stucky GD (2004) Cubic mesoporous frameworks with a mixed semiconductor nanocrystalline wall structure and enhanced sensitivity to visible light. Angew. Chem. Int. Ed. 43:3037CrossRefGoogle Scholar
  71. 71.
    Bosc F, Edwards D, Keller N, Keller V, Ayral A (2006) Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation. Thin Solid Films 495:272CrossRefGoogle Scholar
  72. 72.
    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3:787CrossRefGoogle Scholar
  73. 73.
    Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3∕TiO2 films and their photocatalytic properties. Chem. Mater. 18:847CrossRefGoogle Scholar
  74. 74.
    O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737CrossRefGoogle Scholar
  75. 75.
    Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett. 83:3380CrossRefGoogle Scholar
  76. 76.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338Google Scholar
  77. 77.
    Hagfeldt A, Grätzel M (2000), Molecular photovoltaics. Acc. Chem. Res. 33:269CrossRefGoogle Scholar
  78. 78.
    Lancelle-Beltran E, Prene P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissiere C, Grosso D, Sanchez C (2006) Nanostructured hybrid solar cells based on self-assembled mesoporous titania thin films. Chem. Mater. 18:6152CrossRefGoogle Scholar
  79. 79.
    Zukalova M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5:1789CrossRefGoogle Scholar
  80. 80.
    Coakley KM, Liu YX, Goh C, McGehee MD (2005) Ordered organic-inorganic bulk heterojunction photovoltaic cells. MRS Bull. 30:37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry and Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Chemistry and Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations