High-Tc Superconducting Thin- and Thick-Film–Based Coated Conductors for Energy Applications



Although the first epitaxial films of YBCO with high T c were grown nearly 20 years ago, the understanding and control of the nanostructures responsible for the dissipation-free electrical current transport in high temperature superconductors (HTS) is quite recent. In the last 6–7 years, major advances have occurred in the fundamental investigation of low angle grain boundaries, flux-pinning phenomena, growth mode, and atomic-level defect structures of HTS epitaxial films. As a consequence, it has been possible to map and even engineer to some extent the performance of HTS coatings in large regions of the operating H, T, J phase space. With such progress, the future of high temperature superconducting wires looks increasingly promising despite the tremendous challenges offered by these brittle and anisotropic materials. Nevertheless, further performance improvements are necessary for the superconducting technology to become cost-competitive against copper wires and ultimately succeed in revolutionizing the transmission of electricity. This can be achieved by further diminishing the gap between theoretical and experimental values of the critical current density J c, and/or increasing the thickness of the superconductive layer as much as possible without degrading performance. In addition, further progress in controlling extrinsic and/or intrinsic nano-sized defects within the films is necessary to significantly reduce the anisotropic response of HTS and obtain a nearly constant dependence of the critical current on the magnetic field orientation, which is considered important for power applications. This chapter is a review of the challenges still present in the area of superconducting film processing for HTS wires and the approaches currently employed to address them.


Critical Current Density Misfit Dislocation Epitaxial Film Flux Line YBCO Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research presented in this chapter was sponsored by the US Department of Energy, Office of Electricity Delivery and Energy Reliability - Superconductivity Program, under contract DE-AC05–00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge National Laboratory.


  1. 1.
    Bednorz JG, Muller KA (1986) Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64:189–193CrossRefGoogle Scholar
  2. 2.
    Goyal A, Specht ED, Kroeger DM, Mason TA, Dingley DJ, Riley Jr GN, Rupich MW (1995) Grain boundary misorientations and percolative current paths in high-J c powder-in-tube (Bi, Pb)2Sr3Ca3Cu3Ox. Appl. Phys. Lett. 66:2903–2905CrossRefGoogle Scholar
  3. 3.
    Goyal A, Specht ED, Wang ZL, Kroeger DM (1991) Grain boundary studies of high-temperature superconducting materials using electron backscatter Kikuchi diffraction. Ultramicroscopy 67:35–57CrossRefGoogle Scholar
  4. 4.
    Goyal A, Specht ED, Christen DK, Kroeger DM, Pashitski A, Polyanski A, Larbalestier DC (1996) Percolative current flow in high-Jc, polycrystalline high-Tc superconductors. JOM 48:24–29Google Scholar
  5. 5.
    Goyal A, Specht ED, Mason TA (1996) Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors. Appl. Phys. Lett. 68: 711–713CrossRefGoogle Scholar
  6. 6.
    Iijima Y, Tanabe N, Kohno O, Ikeno Y (1992) In plane aligned YBa2Cu3O7 − x thin films deposited on polycrystalline metallic substrate. Appl. Phys. Lett. 60:769–771CrossRefGoogle Scholar
  7. 7.
    Reade RP, Burdahl P, Russo RE, Garrison SM (1993) Y–Ba–Cu–O multilayer structures with amorphous dielectric layers for multichip modules using ion-assisted pulsed-laser deposition. Appl. Phys. Lett. 61:2231–2233CrossRefGoogle Scholar
  8. 8.
    Wu XD, Foltyn SR, Arendt PN, Blumenthal WR, Campbell IH, Cotton JD, Coulter JY, Hults WL, Maley MP, Safar HF, Smith JL (1995) Properties of YBa2Cu3O7 − δ thick films on flexible buffered metallic substrates. Appl. Phys. Lett. 67:2397–2399CrossRefGoogle Scholar
  9. 9.
    Goyal A, Norton, DP, Budai JD, Paranthaman M, Specht ED, Kroeger DM, Christen DK, He Q, Saffian B, List FA, Lee DF, Martin PM, Klabunde CE, Hartfield E, Sikka VK (1996) High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69:1795–1797CrossRefGoogle Scholar
  10. 10.
    Norton DP, Goyal A, Budai JD, Christen DK, Kroeger DM, Specht ED, He Q, Saffian B, Paranthaman M, Klabunde CE, Lee DF, Sales BC, List FA (1996) Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tape. Science 274:755–757CrossRefGoogle Scholar
  11. 11.
    Goyal A, Norton DP, Kroeger DM, Christen DK, Paranthaman M, Specht ED, Budai JD, He Q, Saffian B, List FA, Lee DF, Martin PM, Klabunde CE, Hatfield E, Mathis J, Park C (1997) Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire. J. Mater. Res. (10th Anniversary Special Issue) 12:2924–2940Google Scholar
  12. 12.
    Goyal A, Norton DP, Christen DK, Specht ED, Paranthaman V, Kroeger DM, Budai JD, He Q, List FA, Feenstra R, Kerchner HR, Lee DF, Hatfield E, Martin PM, Mathis J, Park C (1998) Epitaxial superconductors on rolling-assisted biaxially textured substrate (RABiTS): A route towards high critical current density wire. Appl. Supercond. 4:403–427CrossRefGoogle Scholar
  13. 13.
    Do KB, Wang PC, Hammond RH, Geballe TH US Patent 6190752, 2/2001Google Scholar
  14. 14.
    Arendt PN, Foltyn SR, Groves JR, Holesinger TG, Jia Q US Patent 6933065, 08/23/2005Google Scholar
  15. 15.
    Arendt PN, Foltyn V, Groves JR, Jia Q US Patent 6921741, 07/26/2005Google Scholar
  16. 16.
    Paranthaman MP, Aytug T, Christen DK, Feenstra R, Goyal A US Patent 6764770, 07/20/2004Google Scholar
  17. 17.
    Goyal A, Budai JD, Kroeger DM, Norton DP, Specht ED, Christen DK US Patent 5739086, 04/14/1998Google Scholar
  18. 18.
    Goyal A, Budai JD, Kroeger DM, Norton DP, Specht ED, Christen DK US Patent 5741377, 04/21/1998Google Scholar
  19. 19.
    Goyal A, Budai JD, Kroeger DM, Norton DP, Specht ED, Christen DK US Patent 5898020, 04/27/1999Google Scholar
  20. 20.
    Goyal A, Budai JD, Kroeger DM, Norton DP, Specht ED, Christen DK US Patent 5958599, 09/28/1999Google Scholar
  21. 21.
    Schoop U, Rupich MW, Thieme C, Verebelyi DT, Zhang W, Li X, Kodenkandath T, Nguyen N, Siegal E, Civale L, Holesinger T, Maiorov B, Goyal A Paranthaman M (2005) Second generation HTS wire based on RABiTS substrates and MOD YBCO. IEEE Trans. Appl. Super. 15:2611–2616Google Scholar
  22. 22.
    Verebelyi DT, Christen DK, Feenstra R, Cantoni C, Goyal A, Lee DF, Paranthaman M, Arendt PN, DePaula RF, Groves JR, Prouteau C (2000) Low angle grain boundary transport in YBa2Cu3O7 − δ coated conductors. Appl. Phys. Lett. 76:1755–1757CrossRefGoogle Scholar
  23. 23.
    Verebelyi DT, Cantoni C, Budai JD, Christen DK, Kim HJ, Thompson JR (2001) Critical current density of YBa2Cu3O7 − δ low-angle grain boundary in self-field. Appl. Phys. Lett. 78:2031–2033CrossRefGoogle Scholar
  24. 24.
    Arendt PN, Foltyn SR (2004) Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bulletin 29:543–551CrossRefGoogle Scholar
  25. 25.
    Goyal A, Paranthaman M, Schoop U (2004) The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bulletin 29:552–561CrossRefGoogle Scholar
  26. 26.
    Lee PJ (2001) Engineering superconductivity, John Wiley and sons, Inc., New YorkCrossRefGoogle Scholar
  27. 27.
    Campbell AM, Evetts JE (1972) Flux vortices and transport current in type-II superconductors. Adv. Phys. 21:194–428CrossRefGoogle Scholar
  28. 28.
    Larkin AI, Ovchinnikov Y (1979) N. Pinning in Type II superconductors. J. Low. Temp. Phys. 34:409–428Google Scholar
  29. 29.
    Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI, Vinokur VM (1994) Vortices in high-temperature superconductors. Rev. Mod. Phys. 66:1125–1388CrossRefGoogle Scholar
  30. 30.
    Tinkham, M (1975)Introduction to superconductivity. McGraw Hill, New YorkGoogle Scholar
  31. 31.
    Nelson, DR (1996) Points, lines and planes: Vortex pinning in high-temperature superconductors. Physica C 263:12–16CrossRefGoogle Scholar
  32. 32.
    Agassi D, Cullen JR (1999) New vortex state in the presence of a long Josephson junction. Physica C 316:1–12CrossRefGoogle Scholar
  33. 33.
    Agassi D, Christen DK, (2002) Pennycook, S.J. Flux pinning and critical currents at low-angle grain boundaries in high-temperature superconductors. Appl. Phys. Lett. 81:2803–2805CrossRefGoogle Scholar
  34. 34.
    Kumar R, Malik SK, Pai SP, Pinto R, Kumar D (1992) Self-field-induced flux creep in YBa2Cu3O7 − y thin films. Phys. Rev. B 46:5766–5768CrossRefGoogle Scholar
  35. 35.
    Foltyn SR, Civale L In: US Department of Energy Superconductivity for Electric Systems Annual Peer Review (Arlington, Virginia, 2006). Available at < http://www.energetics.com/meetings/supercon06/agenda.html >
  36. 36.
    Dam B, Huijbregtse JM, Klaassen FC, van der Geest RCF, Doornbos G, Rector JH, Testa AM, Freisem S, Martinezk JC, Staüble-Pümpin B, Griessen R (1999) Origin of high critical currents in YBa2Cu3O7 − δ superconducting thin films. Nature 399:439–442CrossRefGoogle Scholar
  37. 37.
    Gong JP, Kawasaki M, Fujito F, Tsuchiya R, Yoshimoto M, Koinuma H (1994) Investigation of precipitate formation on laser-ablated YBa2Cu3O7 − δ thin films. Phys. Rev. B 50:3280CrossRefGoogle Scholar
  38. 38.
    Kanda N, Kawasaki M, Kitajima T, Koinuma H (1997) Diagnosis of precipitate formation in pulsed-laser deposition of YBa2Cu3O7 − δ by means of in situ laser-light scattering and ex situ atomic force microscopy. Phys. Rev. B 56:8419CrossRefGoogle Scholar
  39. 39.
    Rijnders G, Currás S, Huijben M, Blank DHA, Rogalla H (2004) Influence of substrate–film interface engineering on the superconducting properties of YBa2Cu3O7 − δ Appl. Phys. Lett. 84:1151–1153Google Scholar
  40. 40.
    Haage T, Zegenhagen J, Li V, Habermeier H-U, Cardona M, Jooss Ch, Warthmann R, Forkl A, Kronmüller H (1997) Transport properties and flux pinning by self-organization in YBa2Cu3O7 − δ films on vicinal SrTiO3(001). Phys. Rev. B 56:8404–8418CrossRefGoogle Scholar
  41. 41.
    Cantoni C, Verebelyi DT, Specht ED, Budai J, Christen DK (2005) Anisotropic nonmonotonic behavior of the superconducting critical current in thin YBa2Cu3O7 − δ films on vicinal SrTiO3 surfaces. Phys. Rev. B 71:054509–1–054509–9Google Scholar
  42. 42.
    Wu JZ, Emergo RLS, Wang X, Xu G, Haugan TJ, Barnes PN (2008)Strong nanopore pinning enhances Jc in YBa2Cu3O7 − δ films. Appl. Phys. Lett. 93:062506–062508.Google Scholar
  43. 43.
    őzer MM, Thompson JR, Weitering HH (2006) Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2:173Google Scholar
  44. 44.
    Foltyn SR, Civale L, MacManus-Driscoll JL, Jia QX, Maiorov B, Wang H, Maley M (2007) Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6:631.CrossRefGoogle Scholar
  45. 45.
    Zhou H, Maiorov B, Wang H, MacManus-Driscoll JL, Holesinger TG, Civale L, Jia QX, Foltyn SR (2008) Improved microstructure and enhanced low-field Jc in (Y0. 67Eu0. 33)Ba2Cu3O7 − δ films. Supercond. Sci. Technol. 21:025001Google Scholar
  46. 46.
    Maiorov B, Civale L (2007) Identification of vortex pinning centers and regimes in coated conductors. In: Paranthaman MP, Selvamanickam V (eds) Flux pinning and AC loss studies on YBCO coated conductors, Nova Science Publishers, Inc. New York, pp 35–58Google Scholar
  47. 47.
    Haugan T, Barnes PN, Wheeler R, Meisenkothen F, Sumption M (2004) Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7 − x superconductor. Nature 430:867–870CrossRefGoogle Scholar
  48. 48.
    Haugan T et al. (2005) Flux pinning strengths and mechanisms of YBCO with nanoparticle addition. In: Goyal A, Kuo Y, Leonte O, Wong-Ng W (eds) Epitaxial growth of functional oxides, The Electrochemical Society Inc., Pennington NJ, pp. 359–366Google Scholar
  49. 49.
    MacManus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A, Civale L, Maiorov B, Hawley ME, Maley MP, Peterson DE (2004) Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7 − x + BaZrO3. Nature Mater. 3:439–443CrossRefGoogle Scholar
  50. 50.
    Goyal A, Kang S, Leonard KJ, Martin PM, Gapud AA, Varela M, Paranthaman M, Ijaduola AO, Specht ED, Thompson JR, Christen DK, Pennycook SJ, List FA (2005) Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7 − δ films. Supercon. Sci. Technol. 18:1533–1538CrossRefGoogle Scholar
  51. 51.
    Kang S, Goyal A, Li J, Gapud AA, Martin PM, Heatherly L, Thompson JR, Christen DK, List FA, Paranthaman M, Lee DF (2006) High-performance high-Tc superconducting wires. Science 311:1911–1914CrossRefGoogle Scholar
  52. 52.
    Goyal A Engineered Columnar Defects for Coated Conductors. Presented at the 2008 DOE Annual Peer Review on Superconductivity, available at http://www.energetics.com/supercon08/agenda.html
  53. 53.
    Goyal A et al. (2009) Manuscript in preparationGoogle Scholar
  54. 54.
    Weinstein R, Sawh R, Gandini A, Parks D (2005) Improved pinning by multiple in-line damage. Supercond. Sci. Technol. 18:S188–S193CrossRefGoogle Scholar
  55. 55.
    Li Q, Suenaga M, Foltyn SR, Wang H (2005) Jc(H) crossover in YBCO thick films and Bi2223/Ag tapes with columnar defects IEEE Trans. Appl. Supercon. 15:2787–2789CrossRefGoogle Scholar
  56. 56.
    Civale L, Krusin-Elbaum L, Thompson JR, Weeler R, Marwick AD, Kirk MA, Sun YR, Holtzberg F, Field C (1994) Reducing vortex motion in YBa2Cu3O7 crystals with splay in columnar defects. Phys. Rev. B 50:4102–4105CrossRefGoogle Scholar
  57. 57.
    Wee SH, Goyal A, Zuev YL, Cantoni C (2008) High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering. Supercond. Sci. Technol. 21:092001CrossRefGoogle Scholar
  58. 58.
    Goyal A, Selvamanickam V, Paranthaman M, Aytug T ORNL/SuperPower CRADA: Development of MOCVD-based, IBAD-2G wire. Presented at the 2008 DOE Annual Peer Review on Superconductivity, available at http://www.energetics.com/supercon08/agenda.html
  59. 59.
    Wee SH, Goyal A, Zuev YL, Cook S, Heatherly L (2007) The incorporation of nanoscale columnar defects comprised of self-assembled BaZrO3 nanodots to improve the flux pinning and critical current density of NdBa2Cu3O7 − δ films grown on RABiTS. Supercond. Sci. Technol. 20:789CrossRefGoogle Scholar
  60. 60.
    Wee SH, Goyal A, Li J, Zuev YL, Cook S (2007) Strong enhancement of flux pinning in thick NdBa2Cu3O7 − δ films grown on ion-beam assisted deposition-MgO templates via three-dimensional self-assembled stacks of BaZrO3 nanodots. J. Appl. Phys. 102:063906CrossRefGoogle Scholar
  61. 61.
    Foltyn S, Civale L, Maiorov B Presented at US Department of Energy Superconductivity for Electric Systems Annual Peer Review, (2006). Available at: http://www.energetics.com/meetings/supercon06/pdfs/Strategic%20Research/Thursday/02_Strategic_Research_LANL_Maiorov1.pdf
  62. 62.
    Goyal A et al. In preparation for publicationGoogle Scholar
  63. 63.
    Wee SH, Goyal A, Zuev YL, Cantoni C (2008) Tuning flux-pinning in epitaxial NdBa2Cu3O7 − δ films via engineered, hybrid nanoscale defect structures. Applied Physics Express 1:111702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations