Skip to main content

Theory of Ferroelectricity and Size Effects in Thin Films

  • Chapter
  • First Online:
Book cover Thin Film Metal-Oxides

Abstract

Ferroelectrics form an important class of materials with giant electromechanical and dielectric response properties, which are crucial in technologies ranging from micro-electromechanical systems (MEMS) to computer memory devices. Ferroelectrics exhibit a spontaneous electric polarization (electric dipole moment per unit volume) that can be switched with large enough external fields to its symmetry equivalent states, in particular to the one with reversed direction. Fundamentally, the strong coupling of spontaneous polarization with external stress and electric fields is linked with a structural (or ferroelectric) phase transition exhibited by ferroelectrics as a function of temperature, which depends sensitively on applied stress and electric fields. The coupling between the polarization and stress facilitates their use as sensors and actuators, and the dielectric coupling and switchability of polarization facilitate their use in memory devices. With a constant trend of miniaturization of devices, it is essential to understand how these properties of bulk ferroelectrics evolve to the ones at nano-scale. Measurement of properties of a nano-structure of a material and its potential use in a device depend very much on its chemical, electrical and mechanical environment. Fundamentally, this is because (a) a sizeable fraction of atoms in a nano-structure belongs to its surface or interface with environment, and (b) the length-scale(s) associated with its interface depend on the nature of its environment. This becomes even more important in the context of a ferroelectric due to intrinsically strong coupling of its polarization with strain, electric field and chemistry. For example, shape of a nano-structure and the metallic versus insulating nature of its surrounding material determine the electro-static boundary conditions. The lattice mismatch between a ferroelectric nano-structure and its surrounding material determine the mechanical boundary conditions, and chemical bonding or charge transfer between them determine the changes in the local dipole moments arising from local chemistry. Thus, an accurate description of properties of a ferroelectric at nano-scale requires realistic treatment of the electrostatic, mechanical and chemical boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawber M, Rabe KM, Scott JF (2005) Rev. Mod. Phys. 77:1083

    Article  CAS  Google Scholar 

  2. Rabe KM, Waghmare UV (1995) Phys. Rev. B 52:13236

    Article  CAS  Google Scholar 

  3. Tadmor EB, Waghmare UV, Smith GS, Kaxiras E (2002) Acta Materialia 50:2989–3002

    Article  CAS  Google Scholar 

  4. Raman CV, Nedungadi TMK (1940) Nature 145:147

    Article  CAS  Google Scholar 

  5. Cochran W (1959) Phys. Rev. Lett. 3:412

    Article  CAS  Google Scholar 

  6. Anderson PW (1959) Fizika dielektrikov Moscow, p. 290

    Google Scholar 

  7. Vanderbilt D (1997).Current Opinions in Solid State and Materials Science 2, 701

    Article  CAS  Google Scholar 

  8. Cohen RE (1992) Nature 358:136

    Article  CAS  Google Scholar 

  9. Zhong W, King-Smith RD, David Vanderbilt (1994) Phys. Rev. Lett. 72:3618

    Article  CAS  Google Scholar 

  10. Ghosez Ph, Michenaud J-P, X. Gonze (1998) Phys. Rev. B 58:6224

    Article  CAS  Google Scholar 

  11. Waghmare UV, Spaldin NA, Kandpal HC, Seshadri R (2003) Phys Rev B 67:125111

    Article  Google Scholar 

  12. Bhattacharjee J, Waghmare UV arXiv:0811.2039 (cond-mat)

    Google Scholar 

  13. Rabe KM, U V Waghmare (1996) Philosophical Transactions of the Royal Society of London Series A- Mathematical Physical and Engineering Sciences 354(1720):2897–2914

    Google Scholar 

  14. Fu H and Cohen RE (2000) Nature 403:281–283

    Article  CAS  Google Scholar 

  15. Paul J, Nishimatsu T, Kawazoe Y, Waghmare UV (2009) Phys. Rev B 80:024107

    Article  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Phys. Rev. 136:B864–B871; Kohn W, Sham LJ (1965) Phys. Rev. 140:A1133–A1138

    Google Scholar 

  17. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev. Mod. Phys. 64:1045

    Article  CAS  Google Scholar 

  18. Gonze X (1999) Adv. in Quantum Chemistry 33:225–239; Baroni S, de Girancoli S., Dal Corso A (2001) Rev. Mod. Phys. 73:515

    Google Scholar 

  19. Ghosez Ph, Cockayne EJ, Waghmare UV, K. M. Rabe (1999) Phys. Rev. B 60:836

    Article  CAS  Google Scholar 

  20. King-Smith RD, Vanderbilt D (1994) Phys. Rev. B 49:5828

    Article  CAS  Google Scholar 

  21. Resta R (1994) Rev. Mod. Phys. 66:899

    Article  CAS  Google Scholar 

  22. Bhattacharjee J, Waghmare UV (2005) Phys. Rev. B 71:45106

    Article  Google Scholar 

  23. Waghmare UV, Rabe KM (2004) In: Demkov A and Navrotsky A (eds) Materials fundamentals of gate dielectrics. Springer, New York

    Google Scholar 

  24. Zhong W, Vanderbilt D, Rabe KM (1995) Phys. Rev. B 52:6301

    Article  CAS  Google Scholar 

  25. Waghmare UV, Rabe KM (1997) Phys. Rev. B 55:6161

    Article  CAS  Google Scholar 

  26. Lai B-K, Ponomareva I, Kornev IA, Bellaiche L, Salamo GJ (2007) Phys. Rev. B 75:085412

    Article  Google Scholar 

  27. Paul J, Nishimatsu T, Kawazoe Y, Waghmare UV (2007) Phys. Rev. Lett. 99:77601

    Article  Google Scholar 

  28. Choi KJ et al. (2004)Science 306:1005

    Google Scholar 

  29. Paul J, Nishimatsu T, Kawazoe Y, Waghmare UV (2008) Appl. Phys. Lett. 93:242905

    Article  Google Scholar 

  30. Ponomareva I, Naumov II, Kornev I, Huaxiang Fu, Bellaiche L (2005) Phys. Rev. B 72:140102

    Article  Google Scholar 

  31. Dawber M, Chandra P, Littlewood PB, Scott JF (2003) J Phys. Cond Mat 15:L1393

    Google Scholar 

  32. http://loto.sourceforge.net/feram/

  33. Vanderbilt D and Cohen MH (2001) Phys. Rev. B 63:094108

    Article  Google Scholar 

  34. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998), Phys Rev Lett 80:1988

    Article  CAS  Google Scholar 

  35. Shirokov VB (2007) Phys Rev B 75:224116

    Article  Google Scholar 

  36. Bratkovsky AM, Levanyuk AP (2005) Phys Rev Lett 94:107601

    Article  CAS  Google Scholar 

  37. Bratkovsky AM, Levanyuk AP (2000) Phys Rev Lett 84:3177

    Article  CAS  Google Scholar 

  38. Iniguez J et al. (2001) Phys Rev B 63:144103

    Article  Google Scholar 

  39. Giddy AP et al. (1989) J. Phys. C 1:8327

    Google Scholar 

  40. Cohen RE (1997) Ferroelectrics 194:323

    Article  CAS  Google Scholar 

  41. Padilla J, Vanderbilt D (1997) Phys Rev B 56:1625

    Article  CAS  Google Scholar 

  42. Meyer B, Vanderbilt D (2001) Phys Rev B 63:205426

    Article  Google Scholar 

  43. Tinte S, Stachiotti MG (2001) Phys Rev B 64:235403

    Article  Google Scholar 

  44. Mangalam VK et al. (2009) Solid State Comm. 149:1

    Article  CAS  Google Scholar 

  45. Sundaresan A et al. (2006) Phys Rev B 74:161306

    Article  Google Scholar 

  46. Junquera J and Ghosez Ph (2003) Nature 422:506

    Article  CAS  Google Scholar 

  47. Dawber M et al. (2008) J Phys Cond Mat 20:264015

    Article  Google Scholar 

  48. Rabe KM (2005) Current Opinion in Sol State and Mat. Sci 9:122

    CAS  Google Scholar 

  49. Kim L et al. (2005) Appl. Phys. Lett. 87:052903 (2005), Phys. Rev. B 72:214121

    Google Scholar 

  50. Fennie C, Rabe K (2005) Phys Rev B 71:100102

    Article  Google Scholar 

  51. Ederer C, Spaldin NA (2005) Phys Rev Lett 95:257601

    Article  Google Scholar 

  52. Paul J, Nishimatsu T, Kawazoe Y, Umesh V (2008) Waghmare, Pramana 70:264

    Article  Google Scholar 

  53. Nishimatsu T et al. (2008) Phys. Rev. B 78:104104

    Article  Google Scholar 

  54. Paul J et al. (2008) Appl. Phys. Lett. 93:242905

    Article  Google Scholar 

  55. Chandra P et al. (2003) arXiv: cond-mat/0310074v1

    Google Scholar 

  56. Fong DD et al. (2004) Science 304:1650

    Article  CAS  Google Scholar 

  57. Bratkovsky AM, Levanyuk AP (2001) Phys Rev Lett 86:3642

    Article  CAS  Google Scholar 

  58. Ahn CH, Rabe KM and Triscone J-M (2004) Science 303:488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Jaita Paul, T Nishimatsu, Y Kawazoe and K M Rabe for collaborative interactions. The author is grateful to the department of atomic energy for funding through a DAE-SRC project award, and the African University of Science and Technology for kind hospitality, where a part of this chapter was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh V. Waghmare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Waghmare, U.V. (2010). Theory of Ferroelectricity and Size Effects in Thin Films. In: Ramanathan, S. (eds) Thin Film Metal-Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0664-9_6

Download citation

Publish with us

Policies and ethics