Bipolar Resistive Switching in Oxides for Memory Applications

  • Rainer Bruchhaus
  • Rainer Waser


Resistance change Random Access Memory (RRAM) devices in which at least two resistance states are used are a top candidate for future nonvolatile data storage. Simple Metal-Insulator-Metal (MIM) structures form the memory element which can be easily incorporated in large arrays. In particular, in the so-called Valence Change Memories (VCM) the drift of anions, typically oxygen, is considered as the key step to explain the bistable resistive switching behavior. A first-order classification of the observed material changes is related to the geometrical location. In “filamentary” type switching the formation and rupture of a thin filament is responsible for the resistance change. In the “distributed” systems the switching can be traced back to modifications at interfaces. Oxygen ion migration into thin tunnel oxides in high electric fields and Schottky barrier engineering with metals and complex perovskites are two mechanisms under discussion for the distributed systems. In the filamentary type of switching fast oxygen ion transport along extended defects is demonstrated to be the key step for the formation of the conducting filaments. The bistable resistance characteristics with switching induced by voltage pulses is a promising approach for future nonvolatile memory technologies. Excellent scaling behavior to sizes below 20 nm has been demonstrated.


Oxygen Vacancy Transition Metal Oxide Resistance Switching Switching Effect Memory Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge valuable discussions with G. Bednorz and I. Meijer (IBM Research, Zurich), M. Kund and R. Symanczyk (Qimonda AG, Munich), U-In Chung and B. Bae (Samsung Electronics), V. Zhirnov (SRC), J. Yi (Hynix Semiconductor), A. Sawa (CERC, Tsukuba), H. Hwang (Gwangju Institute of Science and Technology), R. Dittmann, K. Szot (Research Center Juelich), and D. Strukov and R.S. Williams (HP Labs, Palo Alto).


  1. 1.
    Wuttig M, Yamada Y (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824CrossRefGoogle Scholar
  2. 2.
    Waser R (2008) Electrochemical and thermochemical memories. IEDM Tech Digest 289Google Scholar
  3. 3.
    Kozicki MN, Park M, Mitkova M (2005) Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol 4:331CrossRefGoogle Scholar
  4. 4.
    Kund M, Beitel G, Pinnow C-U, Roehr T, Schumann J, Symanczyk R, Ufert K-D, Mueller G (2005) Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech Digest 754Google Scholar
  5. 5.
    Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833Google Scholar
  6. 6.
    Hickmott TW (1962) Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 33:2669CrossRefGoogle Scholar
  7. 7.
    Gibbons JF, Beadle WE (1964) Switching properties of thin NiO films. Solid-State Electron 7:785CrossRefGoogle Scholar
  8. 8.
    Simmons JG, Verderber RR (1967) New conduction and reversible memory phenomena in thin insulating films. Proc R Soc London Ser A 301:77CrossRefGoogle Scholar
  9. 9.
    Dearnaley G, Stoneham AM, Morgan DV (1970) Electrical phenomena in amorphous oxide films. Rep Prog Phys 33:1129CrossRefGoogle Scholar
  10. 10.
    Oxley DP (1977) Electroforming, switching and memory effects in oxide thin films. Electrocomponent Sci Technol UK 3:217Google Scholar
  11. 11.
    Pagnia H, Sotnik N (1988) Bistable switching in electroformed metal-insulator-metal devices. Phys Stat Sol 108:11CrossRefGoogle Scholar
  12. 12.
    Hiatt WR, Hickmott TW (1965) Bistable switching in niobium oxide diodes. Appl Phys Lett 6:106CrossRefGoogle Scholar
  13. 13.
    Beck A, Bednorz JG, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77:139CrossRefGoogle Scholar
  14. 14.
    Liu SQ, Wu NJ, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76:2749CrossRefGoogle Scholar
  15. 15.
    Baiatu T, Waser R, Haerdtl KH (1990) DC electrical degradation of perovskite-type titanates: III. A model of the mechanism. J Amer Ceram Soc 73:1663CrossRefGoogle Scholar
  16. 16.
    Sawa A (2008) Resistive switching in transition metal oxides. Materials Today 11(6):28CrossRefGoogle Scholar
  17. 17.
    Hirose Y, Hirose H (1976) Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J Appl Phys 47:2767CrossRefGoogle Scholar
  18. 18.
    Kinoshita K, Noshiro H, Yoshida C, Sato Y, Aoki M, Sugiyama Y (2008) Universal understanding of direct current transport properties of ReRAM based on a parallel resistance model. J Mater Res 23:812CrossRefGoogle Scholar
  19. 19.
    Baek IG, Lee MS, Seo S, Lee MJ, Seo DH, Suh D-S, Park JC, Park SO, Kim HS, Yoo IK, Chung U-I, Moon JT (2004) Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Digest 587Google Scholar
  20. 20.
    Meyer R, Schloss L, Brewer J, Lambertson R, Kinney W, Sanchez J, Rinerson D (2008) Oxide dual-layer memory element for scalable non-volatile cross-point memory technology. NVMTS Proc. p. 1Google Scholar
  21. 21.
    McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J (2003) Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans Electron Dev 50(8):1771CrossRefGoogle Scholar
  22. 22.
    Hasan M, Dong R, Choi HJ, Lee DS, Seong D-J, Pyun MB, Hwang H (2008) Uniform resistive switching with a thin reactive metal interface layer in metal-La0. 7Ca0. 3MnO3-metal heterostructures. Appl Phys Lett 92:202102Google Scholar
  23. 23.
    Baikalov A, Wang YQ, Shen B, Lorenz B, Tsui S, Sun YY, Xue YY, Chu CW (2003) Field-driven hysteretic and reversible resistive switch at the \(\mathrm{Ag}\mbox{ \textendash }{\mathrm{Pr}}_{0.7}{\mathrm{Ca}}_{0.3}{\mathrm{MnO}}_{3}\) interface. Appl Phys Lett 83:957Google Scholar
  24. 24.
    Sawa A, Fujii T, Kawasaki M, Tokura Y (2004) Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0. 7Ca0. 3MnO3 interface. Appl Phys Lett 85:4073Google Scholar
  25. 25.
    Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y, Tokura Y (2005) Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3 ∕ SrTi0. 99Nb0. 01O3. Appl Phys Lett 86:012107Google Scholar
  26. 26.
    Tomioka Y, Asamitsu A, Kuwahara H, Morimoto Y, Tokura Y (1996) Magnetic-field-induced metal-insulator phenomena in Pr1 − xCaxMnO3 with controlled charge-ordering instability. Phys Rev B 53:R1689CrossRefGoogle Scholar
  27. 27.
    Tomioka Y, Tokura Y (2004) Global phase diagram of perovskite manganites in the plane of quenched disorder versus one-electron bandwidth. Phys Rev B 70:014432CrossRefGoogle Scholar
  28. 28.
    Sawa A, Fujii T, Kawasaki M, Tokura Y (2006) Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl Phys Lett 88:232112CrossRefGoogle Scholar
  29. 29.
    Fujii T, Kawasaki M, Sawa A, Kawazoe Y, Akoh H, Tokura Y (2007) Electrical properties and colossal electroresistance of heteroepitaxial \({\mathrm{SrRuO}}_{3}/{\mathrm{SrTi}}_{1-\mathrm{x}}{\mathrm{Nb}}_{\mathrm{x}}{\mathrm{O}}_{3}\ (0.0002 \leq \mathrm{x} \leq 0.02)\) Schottky junctions. Phys Rev B 75:165101Google Scholar
  30. 30.
    Nian YB, Strozier J, Wu NJ, Chen X, Ignatiev A (2007) Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys Rev Lett 98:146403CrossRefGoogle Scholar
  31. 31.
    Ju HL, Gopalakrishnan J, Peng JL, Qi Li, Xiong GC, Venkatesan T, Greene RL (1995) Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0. 67Ba0. 33MnOz. Phys Rev B 51:6143Google Scholar
  32. 32.
    Dong R, Lee DS, Xiang WF, Oh SJ, Seong DJ, Heo SH Choi HJ, Kwon MJ, Seo SN, Pyun MB, Hasan H, Hwang H (2007) Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures. Appl Phys Lett 90:042107CrossRefGoogle Scholar
  33. 33.
    Ni MC, Guo SM, Tian HF, Zhao YG, Li JQ (2007) Resistive switching effect in SrTiO3 − δ/ Nb-doped SrTiO3 heterojunction. Appl Phys Lett 91:183502CrossRefGoogle Scholar
  34. 34.
    Tokunaga Y, Kaneko Y, He JP, Arima T, Sawa A, Fujii T, Kawasaki M, Tokura Y (2006) Colossal electroresistance effect at metal electrode/\({\mathrm{La}}_{1-\mathrm{x}}{\mathrm{Sr}}_{1+\mathrm{x}}{\mathrm{MnO}}_{4}\) interfaces. Appl Phys Lett 88:223507CrossRefGoogle Scholar
  35. 35.
    Odagawa A, Sato H, Inoue IH, Akoh H, Kawasaki M, Tokura Y, Kanno T, Adachi H (2004) Colossal electroresistance of a Pr0. 7Ca0. 3MnO3 thin film at room temperature. Phys Rev B 70:224403Google Scholar
  36. 36.
    Janousch M, Meijer GI, Staub U, Delley B, Karg SF, Andreasson BP (2007) Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv Mat 19:2232CrossRefGoogle Scholar
  37. 37.
    Rozenberg MJ, Inoue IH, Sanchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302CrossRefGoogle Scholar
  38. 38.
    Frederikse HPR, Thurber WR, Hosler R (1964) Electronic transport in strontium titanate. Phys Rev 134:A442CrossRefGoogle Scholar
  39. 39.
    Szot K, Speier W, Bihlmayer G, Waser R (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312CrossRefGoogle Scholar
  40. 40.
    Szot K, Speier W, Carius R, Zastrow U, Beyer W (2002) Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys Rev Lett 88:75508CrossRefGoogle Scholar
  41. 41.
    Szot K, Speier W, Eberhardt W (1992) Microscopic nature of the metal to insulator phase transition induced through electroreduction in single-crystal KNbO3. Appl Phys Lett 60:1190CrossRefGoogle Scholar
  42. 42.
    Yamada H, Miller GR (1973) Point defects in reduced strontium titanate. J Solid State Chem 6:169CrossRefGoogle Scholar
  43. 43.
    Szot K, Dittmann R, Speier W, Waser R (2007) Nanoscale resistive switching in SrTiO3 thin films. Phys Stat Solidi (RRL) 1:R86Google Scholar
  44. 44.
    Yang YY, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech 3:429CrossRefGoogle Scholar
  45. 45.
    Inoue H, Yasuda S, Akinaga H, Tagaki H (2008) Nonpolar resistance switching of metal/ binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Phys Rev B 77:035105CrossRefGoogle Scholar
  46. 46.
    Muenstermann R, Dittmann R, Szot K, Mi S, Jia C-L, Meuffels P, Waser R (2008) Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3. Appl Phys Lett 93:023110CrossRefGoogle Scholar
  47. 47.
    Tomio T, Miki H, Tabata H, Kawai T, Kawai S (1994) Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping. J Appl Phys 76:5886CrossRefGoogle Scholar
  48. 48.
    Leitner A, Rogers CT, Prize JC, Rudman DA, Herman DR (1998) Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films. Appl Phys Lett 72:3065CrossRefGoogle Scholar
  49. 49.
    Meyer R, Waser R (2004) Resistive donor-doped SrTiO3 sensors: I, basic model for a fast sensor response. Sens Actuators B 101:335CrossRefGoogle Scholar
  50. 50.
    Schaadt DM, Yu ET, Vaithyanathan V, Schlom DG (2004) Nanoscale current transport in epitaxial SrTiO3 on n+-Si investigated with conductive atomic force microscopy. J Vac Sci Technol B22:2030Google Scholar
  51. 51.
    Jameson JR, Fukuzumi Y, Wang Z, Griffin P, Tsunoda K, Meijer GI (2007) Field-programmable rectification in rutile TiO2 crystals. Appl Phys Lett 91:112101CrossRefGoogle Scholar
  52. 52.
    Rohde C, Choi BJ, Jeong DS, Choi S, Zhao J-S, Hwang CS (2005) Identification of a determining parameter for resistive switching of TiO2 thin films. Appl Phys Lett 86:262907CrossRefGoogle Scholar
  53. 53.
    Kim KM, Choi BJ, Shin YC, Choi S, Hwang CS (2007) Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl Phys Lett 91:012907CrossRefGoogle Scholar
  54. 54.
    Tsunoda K, Fukuzumi Y, Jameson JR, Wang Z, Griffin PB, Nishi Y (2007) Bipolar resistive switching in polycrystalline TiO2 films. Appl Phys Lett 90:113501CrossRefGoogle Scholar
  55. 55.
    Choi BJ, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH, Kim HJ, Hwang CS, Szot K, Waser R, Reichenberg B, Tiedke S (2005) Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys 98:033715CrossRefGoogle Scholar
  56. 56.
    Jeong DS, Schroeder H, Waser R (2007) Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem Solid-State Lett 10:G51CrossRefGoogle Scholar
  57. 57.
    Fujimoto M, Koyama H, Konagai M, Hosoi Y, Ishihara K, Ohnishi S, Awaya N (2006) TiO2 anatase nanolayer on tin thin film exhibiting high-speed bipolar resistive switching. Appl Phys Lett 89:223509CrossRefGoogle Scholar
  58. 58.
    Fujimoto M, Koyama H, Hosoi Y, Ishihara K, Kobayashi S (2006) High-speed resistive switching of TiO2/TiN nano-crystalline thin film. Jpn J Appl Phys 2 11:L310Google Scholar
  59. 59.
    Wu SX, Xu LM, Xing XJ, Chen SM, Yuan YB, Liu YJ, Yu YP, Li XY, Li SW (2008) Reverse-bias-induced bipolar resistance switching in Pt/TiO2 ∕ SrTi0. 99Nb0. 01 O 3/Pt devices. Appl Phys Lett 93:043502Google Scholar
  60. 60.
    Lin C-Y, Lin C-C, Huang C-H, Lin C-H, Tseng T-Y (2007) Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films. Surface Coat Tech 202:1319CrossRefGoogle Scholar
  61. 61.
    Muraoka S, Osano K, Kanzawa Y, Mitani S, Fujii S, Katayama K, Katoh Y, Wie Z, Mikawa T, Arita K, Kawashima Y, Azuma R, Kawai K, Shimakawa K, Odagawa A, Takagi T (2007) Fast switching and long retention Fe-O ReRAM and its switching mechanism. IEDM Tech Dig 779Google Scholar
  62. 62.
    Odagawa A, Katoh Y, Kanzawa Y, Wei Z, Mikawa T, Muraoka S, Takagi T (2007) Electroforming and resistance-switching mechanism in a magnetite thin film. Appl Phys Lett 91:133503CrossRefGoogle Scholar
  63. 63.
    Wei Z, Kanzawa Y, Arita K, Katoh Y, Kawai K, Muraoka S, Mitani S, Fujii S, Katayama K, Iijima M, Mikawa T, Ninomiya T, Miyanaga R, Kawashima Y, Tsuji K, Himeno A, Okada T, Azuma R, Shimakawa K, Sugaya H, Takagi T, Yasuhara R, Horiba K, Kumigashira H, Oshima M (2008) Highly reliable TaOx reram and direct evidence of redox reaction mechanism. IEDM Tech Digest 293Google Scholar
  64. 64.
    Chen A, Haddad S, Wu Y-C, Fang T-N, Lan Z, Avanzino S, Pangrle S, Buynoski M, Rathor M, Cai W, Tripsas N, Bill C, VanBuskirk M, Taguchi M (2005) Non-volatile resistive switching for advanced memory applications. IEDM Tech Digest 765Google Scholar
  65. 65.
    Chen A, Haddad S, Wu YC, Lan Z, Fang TN, Kaza S (2007) Switching characteristics of Cu2O metal-insulator-metal resistive memory. Appl Phys Lett 91:123517CrossRefGoogle Scholar
  66. 66.
    Yang W-Y, Kim W-G, Rhee SW (2008) Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties. Thin Solid Films 517:967CrossRefGoogle Scholar
  67. 67.
    Rakhshani AE (1991) The role of space-charge-limited-current conduction in evaluation of the electrical properties of thin Cu2O films. J Appl Phys 69:2365CrossRefGoogle Scholar
  68. 68.
    Hasan M, Dong R, Choi HJ, Lee DS, Seong DJ, Pyun MB, Hwang H (2008) Effect of ruthenium oxide electrode on the resistive switching of Nb-doped strontium titanate. Appl Phys Lett 93:052908CrossRefGoogle Scholar
  69. 69.
    Schindler C, Thermadam SCP, Waser R, Kozicki MN (2007) Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electron Dev 54:2762CrossRefGoogle Scholar
  70. 70.
    Kozicki MN, Gopalan C, Balakrishnan M, Mitkova M (2006) A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans Nanotechn 5:535CrossRefGoogle Scholar
  71. 71.
    Watanabe T, Hoffmann-Eifert S, Yang L, Ruediger A, Kuegeler C, Hwang CS, Waser R (2007) Liquid injection atomic layer deposition of TiOx films using Ti[OCH(CH3)2]4. J Electrochem Soc 154:G134CrossRefGoogle Scholar
  72. 72.
    Chudnovskii FA, Odynets LL, Pergament AL, Stefanovich GB (1996) Electroforming and switching in oxides of transition metals: The role of metal–insulator transition in the switching mechanism. J Solid State Chem 122:95CrossRefGoogle Scholar
  73. 73.
    Waser R (ed) (2003) Nanoelectronics and information technology, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  74. 74.
    Wu W, Jung GY, Olynick DL, Straznicki J, Li Z, Li X, Ohlberg DAA, Chen Y, Wang S-Y, Liddle JA, Tong WM, Williams RS (2005) One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phys A 80:1173CrossRefGoogle Scholar
  75. 75.
    Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, Delonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng H-R, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature 445:414CrossRefGoogle Scholar
  76. 76.
    Kinoshita K, Tamura T, Aoki M, Sugiyama Y, Tanaka H (2006) Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides. Jpn J Appl Phys 45:L991CrossRefGoogle Scholar
  77. 77.
    Nakagome Y, Horiguchi M, Kawahara T, Ito K (2003) Review and future prospects of low-voltage RAM circuits. IBM J Res Dev 47:525CrossRefGoogle Scholar
  78. 78.
    Ignatiev A, Wu NJ, Chen X, Liu SQ, Papagianni C, Strozier J (2006) Resistance switching in perovskite thin films. Phys Stat Sol B 243:2089CrossRefGoogle Scholar
  79. 79.
    Serin N, Serin T, Horzum S, Celik Y (2005) Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semicond Sci Technol 20:398CrossRefGoogle Scholar
  80. 80.
    Zhirnov VV, Cavin III,RK, Hutchby JA, Bourianoff GI (2003) Limits to binary logic switch scaling - a gedanken model. Proc IEEE USA 91:1934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Solid State Research, Forschungszentrum JuelichJuelichGermany

Personalised recommendations