Skip to main content

Design of Heterogeneous Catalysts and the Application to the Oxygen Reduction Reaction

  • Chapter
  • First Online:
  • 2550 Accesses

Abstract

A method is developed to use ab initio calculations to predict what materials will have high catalytic activity for heterogeneous dissociative adsorption reactions. This method may be used to restrict the combinatorial possibilities of materials selection to a reasonable search space. The method is demonstrated for the test case of the oxygen reduction reaction, and it is shown that an Ag–Pt compound is superior to the standard Pt catalyst. Density functional theory was used to evaluate dissociative adsorption of oxygen on Ag n (n = 4, 6, 8, 14), Pt m (m = 2, 4, 8), and Ag n Pt m [(n, m) = (4, 2), (6, 2), (4, 4)] clusters. Stable adsorbed, dissociated, and activated states and energies were found. The AgPt compounds show enhanced performance over Ag and Pt clusters of comparable size. Calculated energy of associative and dissociative adsorption on Pt and Ag is in broad agreement with experiment. DFT models of oxygen adsorption and dissociation on slabs of Ag, Pt, and PtAg x were found to agree with experiments and cluster models. A model is given to explain the reactivity of oxygen with Pt and Ag. A Pt/Ag bilayer and a random alloy are examined through experiment and simulation to show that it is possible to fine tune electronic properties, and therefore reactivity for oxygen dissociation. The reactivity of these compounds toward oxygen is generally intermediate to that of pure Ag and Pt; thus a AgPt alloy is expected to be a better low-temperature catalyst for oxygen dissociation than pure Ag or Pt under nearly reversible conditions. Indeed, experiments confirm an Ag3Pt2 alloy to show superior activity at lower than half the platinum loading. Stress analysis confirms that the altered electronic structure, and thus the enhanced catalytic activity, must be due to an alloying effect rather than a strain effect from lattice expansion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hammer B, Nørskov J (2000) Adv Catal 45: 71.

    Article  CAS  Google Scholar 

  2. Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146: 1. Mitterdorfer A, Gauckler L (1999) Solid State Ion 117:203; Mizusaki J, Amano K, Yamauchi S, Fueki K (1987) Solid State Ion 22:323; Wang D, Nowick A (1979) J Electrochem Soc 126:1155; Okamoto H, Kawamura G, Kudo T (1983) Electrochim Acta 28:379; Nakagawa N, Kuroda C, Ishida M (1991) J Chem Eng Japan 25: 55.

    Google Scholar 

  3. Xu W, Schierbaum K, Goepel W (1997) Int J Quantum Chem, 62 :427.

    Article  CAS  Google Scholar 

  4. Li T, Balbuena P (2001) J Phys Chem B 105:9943.

    Article  CAS  Google Scholar 

  5. Eichler A, Hafner J (1997) Phys Rev Lett 79:4481.

    Article  CAS  Google Scholar 

  6. Li W, Stampfl C, Scheffler M (2002) Phys Rev B 65:075407.

    Article  Google Scholar 

  7. Valden M, Lai X, Goodman D (1998) Science 281:1647.

    Article  CAS  Google Scholar 

  8. Zhang J, Vukmirovic M, Xu Y, Mavrikakis M, Adzic R (2005) Angew Chem In. Ed 44:2132.

    Article  CAS  Google Scholar 

  9. Brankovic SR, Wang J, Adzic R (2001) Surf Sci 474:L173.

    Article  CAS  Google Scholar 

  10. Mavrikakis M, Hammer B, Nørskov J (1998) Phys Rev Lett 81:2819.

    Article  Google Scholar 

  11. Becke A (1988), Phys Rev A 38:3098; (1993); J Chem Phys 98, 1372: 5648.

    Google Scholar 

  12. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785.

    Article  CAS  Google Scholar 

  13. Hay P, Wadt W (1985) J Chem Phys 82:270.

    Article  CAS  Google Scholar 

  14. Gaussian 03, Revision C.02, Frisch M et al. (2004) Gaussian, Inc., Wallingford CT.

    Google Scholar 

  15. Monkhorst H, Pack J (1976) Phys Rev B 13:5188.

    Article  Google Scholar 

  16. Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C (1992) Phys Rev B 46:6671.

    Article  CAS  Google Scholar 

  17. Kresse G, Hafner J (1994) J Phys Condens Matter 6:8245.

    Article  CAS  Google Scholar 

  18. Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz F (2007) J Electrochem Soc 154: B20.

    Article  CAS  Google Scholar 

  19. Kua J, Goddard W (1998) J Phys Chem B 102: 9481.

    Article  CAS  Google Scholar 

  20. Christensen A, Ruban A, Stoltze P, Jacobsen K, Skriver H, Nørskov J, Besenbacher F (1997) Phys Rev B 56:5822.

    Article  CAS  Google Scholar 

  21. Okamoto H (1997) J Phase Equilib 18:485.

    Article  CAS  Google Scholar 

  22. Mulliken RS (1995) J Chem Phys 23:1833.

    Article  Google Scholar 

  23. Campbell CT, Surf Sci 157:43.

    Google Scholar 

  24. Wang X, Tysoe W, Greenler R, Truszkowska K (1991) Surf Sci 257: 335.

    Article  CAS  Google Scholar 

  25. Gland J, Sexton B, Fisher G (1980) Surf Sci 95:587.

    Article  CAS  Google Scholar 

  26. Brown W, Kose R, King D (1998) Chem Rev 98:797.

    Article  CAS  Google Scholar 

  27. Stegelmann C, Stoltze P (2004) Surf Sci 552:260.

    Article  CAS  Google Scholar 

  28. Huang H, Holme T, Prinz F (2007) ECS Trans 3:31–40.

    Article  CAS  Google Scholar 

  29. Michaelson H (1977) J Apply Phys 48:4729.

    Article  CAS  Google Scholar 

  30. Parker D, Bartram M, Koel B (1989) Surf Sci 217:489.

    Article  CAS  Google Scholar 

  31. Velho L, Bartlett R (1972) Metallurg Trans 3:65.

    Article  CAS  Google Scholar 

  32. Sunde S, Nisancioglu K, Gur TM (1996) J Electrochem Soc 143:3497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Holme, T.P., Huang, H., Prinz, F.B. (2010). Design of Heterogeneous Catalysts and the Application to the Oxygen Reduction Reaction. In: Ramanathan, S. (eds) Thin Film Metal-Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0664-9_10

Download citation

Publish with us

Policies and ethics