Advertisement

Electrochemical Step Edge Decoration (ESED): A Versatile Tool for the Nanofabrication of Wires

  • Reginald M. Penner
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 45)

The properties of nanowires composed of metals and semiconductors became a source of tremendous interest to materials chemists and physicists as soon as it became possible to make them – in the late 1980’s. Among the first methods used for this purpose was electrodeposition into porous templates, such as ultrafiltration membranes (e.g., Nuclepore®) and anodic porous alumina (e.g., AnoporeTM)—a technique that would become known at template synthesis. This family of methods, pioneered by Martin,1-8 Moskovits, 9-14 and Searson15-21 can be used to prepare nanowires that were up to 50 μm in length and as small as 20 nm in diameter. Nanowires are formed in the pores of the template material in a vertical orientation, perpendicular to the plane of the electrode (Fig. 1a). The wire shape and diameter are predetermined by the corresponding properties of the pores present in the template.

Keywords

Highly Orient Pyrolytic Graphite Nucleation Density Bismuth Telluride Metal Nanowires Gold Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Foss, M. J. Tierney, and C. R. Martin. J. Phys. Chem. 96 (1992) 9001.CrossRefGoogle Scholar
  2. 2.
    C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin. J. Phys. Chem. 98 (1994) 2963.CrossRefGoogle Scholar
  3. 3.
    L. Genzel, T. P. Martin, and U. Kreibig. Z. Physik. B 21 (1975) 339.CrossRefGoogle Scholar
  4. 4.
    S. A. Sapp, D. T. Mitchell, and C. R. Martin. Chem Mater 11 (1999) 1183.CrossRefGoogle Scholar
  5. 5.
    V. M. Cepak and C. R. Martin. J Phys Chem B 102 (1998) 9985.CrossRefGoogle Scholar
  6. 6.
    J. C. Hulteen, and C. R. Martin. J Mater Chem 7 (1997) 1075.CrossRefGoogle Scholar
  7. 7.
    C. R. Martin. Chem Mater 8 (1996) 1739.CrossRefGoogle Scholar
  8. 8.
    C. R. Martin. Science 266 (1994) 1961.CrossRefGoogle Scholar
  9. 9.
    D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M.Moskovits. J Appl Phys 86 (1999) 3983.CrossRefGoogle Scholar
  10. 10.
    D. N. Davydov, J. Haruyama, D. Routkevitch, B. W. Statt, D. Ellis, M.Moskovits, and J. M. Xu. Phys Rev B-Condensed Matter 57 (1998) 13550.Google Scholar
  11. 11.
    A. A. Tager, J. M. Xu, and M. Moskovits. Phys Rev B-Condensed Matter 55 (1997) 4530.Google Scholar
  12. 12.
    D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu. Ieee Trans Electron Devices 43 (1996) 1646.CrossRefGoogle Scholar
  13. 13.
    D. Almawlawi, C. Z. Liu, and M. Moskovits. J Mater Res 9 (1994) 1014.CrossRefGoogle Scholar
  14. 14.
    C. K. Preston, and M. Moskovits. J Phys Chem 97 (1993) 8495.CrossRefGoogle Scholar
  15. 15.
    K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien. Phys Rev BCondensed Matter 51 (1995) 7381.Google Scholar
  16. 16.
    G. Oskam, J. G. Long, A. Natarajan, and P. C. Searson. J. Phys. E. Appl. Phys. 31 (1998) 1927.Google Scholar
  17. 17.
    K. Liu, C. L. Chien, and P. C. Searson. Phys Rev B-Condensed Matter 58 (1998)R14681.Google Scholar
  18. 18.
    K. I. Liu, C. L. Chien, P. C. Searson, and K. YuZhang. Appl Phys Lett 73 (1998)2222.CrossRefGoogle Scholar
  19. 19.
    K. Liu, C. L. Chien, P. C. Searson, and Y. Z. Kui. Ieee Trans Magn 34 (1998)1093.CrossRefGoogle Scholar
  20. 20.
    L. Sun, P. C. Searson, and C. L. Chien. Appl Phys Lett 74 (1999) 2803.CrossRefGoogle Scholar
  21. 21.
    K. M. Hong, F. Y. Yang, K. Liu, D. H. Reich, P. C. Searson, C. L. Chien, F. F. Balakirev, and G. S. Boebinger. J Appl Phys 85 (1999) 6184.CrossRefGoogle Scholar
  22. 22.
    T. Jung, R. Schlittler, J. K. Gimzewski, and F. J. Himpsel. Appl Phys a-Mat Sci Process 61 (1995) 467.CrossRefGoogle Scholar
  23. 23.
    F. J. Himpsel, T. Jung, and J. E. Ortega. Surf Rev Letters 4 (1997) 371.CrossRefGoogle Scholar
  24. 24.
    D. Y. Petrovykh, F. J. Himpsel, and T. Jung. Surface Sci 407 (1998) 189.CrossRefGoogle Scholar
  25. 25.
    F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rauscher, and J. Viernow. Mrs Bull 24 (1999) 20.Google Scholar
  26. 26.
    H. Röder, E. Hahn, H. Brune, J.-P. Bucher, and K. Kern. Nature 366 (1993) 141.CrossRefGoogle Scholar
  27. 27.
    S. Strbac, O. M. Magnussen, and R. J. Behm. Phys Rev Lett 83 (1999) 3246.CrossRefGoogle Scholar
  28. 28.
    F. A. Moller, O. M. Magnussen, and R. J. Behm. Phys Rev Lett 77 (1996) 5249.CrossRefGoogle Scholar
  29. 29.
    J. V. Zoval, P. Biernacki, and R. M. Penner. Anal. Chem. 68 (1996) 1585.CrossRefGoogle Scholar
  30. 30.
    J. V. Zoval, R. M. Stiger, P. R. Biernacki, and R. M. Penner. J. Phys. Chem. 100 (1996) 837.CrossRefGoogle Scholar
  31. 31.
    J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner. J. Phys. Chem. 102 (1998) 1166.Google Scholar
  32. 32.
    R. Stiger, B. Craft, and R. M. Penner. Langmuir 15 (1999) 790.CrossRefGoogle Scholar
  33. 33.
    H. Liu, and R. M. Penner. J. Phys. Chem. B 104 (2000) 9131.CrossRefGoogle Scholar
  34. 34.
    H. Liu, F. Favier, K. Ng, M. P. Zach, and R. M. Penner. Electrochimica Acta 47 (2001) 671.CrossRefGoogle Scholar
  35. 35.
    S. Gorer, H. Liu, R. M. Stiger, M. P. Zach, J. V. Zoval, and R. M. Penner, Electrodeposition of metal nanoparticles on graphite and silicon, in Handbook of Metal Nanoparticles , Eds. D. Feldheim, and C. Foss, Marcel-Dekker, New York, 2001.Google Scholar
  36. 36.
    R. M. Penner. J. Phys. Chem. B 106 (2002) 3339.CrossRefGoogle Scholar
  37. 37.
    M. P. Zach, K. H. Ng, and R. M. Penner. Science 290 (2000) 2120.CrossRefGoogle Scholar
  38. 38.
    Morcos. J. Chem. Phys. 57 (1972) 1801.CrossRefGoogle Scholar
  39. 39.
    A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge, 1988, p. 421.Google Scholar
  40. 40.
    R. J. Bowling, R. T. Packard, and R. L. McCreery. J. Am. Chem. Soc. 111 (1991)1217.CrossRefGoogle Scholar
  41. 41.
    K. K. Cline, M. T. McDermott, and R. L. McCreery. J. Phys. Chem. 98 (1994)5314.CrossRefGoogle Scholar
  42. 42.
    R. S. Robinson, K. Sternitzke, M. T. McDermott, and R. L. McCreery. J Electrochem Soc 138 (1991) 2412.CrossRefGoogle Scholar
  43. 43.
    R. J. Bowling, R. L. McCreery, C. M. Pharr, and R. C. Engstrom. Anal. Chem. 61 (1989) 2763.CrossRefGoogle Scholar
  44. 44.
    H. Reiss. J. Chem. Phys. 19 (1954) 482.CrossRefGoogle Scholar
  45. 45.
    B. J. Murray, J. T. Newberg, E. C. Walter, Q. Li, J. C. Hemminger, and R. M. Penner. Analytical Chemistry 77 (2005) 5205.CrossRefGoogle Scholar
  46. 46.
    B. J. Murray, E. C. Walter, and R. M. Penner. Nano Letters 4 (2004) 665.CrossRefGoogle Scholar
  47. 47.
    R. M. Penner. J Phys Chem B 106 (2002) 3339.CrossRefGoogle Scholar
  48. 48.
    E. C. Walter, F. Favier, and R. M. Penner. Analytical Chemistry 74 (2002) 1546.CrossRefGoogle Scholar
  49. 49.
    E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, and R. M. Penner. Journal of Physical Chemistry B 106 (2002) 11407.CrossRefGoogle Scholar
  50. 50.
    E. C. Walter, M. P. Zach, F. Favier, B. J. Murray, K. Inazu, J. C. Hemminger, and R. M. Penner. Chemphyschem. 4 (2003) 131.CrossRefGoogle Scholar
  51. 51.
    M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner. Chem. Mater. 14 (2002) 3206.CrossRefGoogle Scholar
  52. 52.
    C. E. Cross, J. C. Hemminger, and R. M. Penner. Langmuir (2007) in press.Google Scholar
  53. 53.
    Q. Li,M. A. Brown,J. C. Hemminger, and R. M. Penner. Chem. Mater. 18 (2006)3432.CrossRefGoogle Scholar
  54. 54.
    Q. G. Li, and R. M. Penner. Nano Letters 5 (2005) 1720.CrossRefGoogle Scholar
  55. 55.
    Q. Li, J. T. Newberg, E. C. Walter, J. C. Hemminger, and R. M. Penner. Nano Letters 4 (2004) 277.CrossRefGoogle Scholar
  56. 56.
    Q. Li,E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer,J. C. Hemminger, and R. M. Penner. Journal of Physical Chemistry B 109 (2005) 3169.CrossRefGoogle Scholar
  57. 57.
    B. J. Murray, J. C. Newberg, J. C. Hemminger, and R. M. Penner. Chem. Mater. 17 (2005) 6611.CrossRefGoogle Scholar
  58. 58.
    Q. G. Li,J. B. Olson, and R. M. Penner. Chem. Mater. 16 (2004) 3402.CrossRefGoogle Scholar
  59. 59.
    M. P. Zach,J. T. Newberg,L. Sierra,J. C. Hemminger, and R. M. Penner. Journal of Physical Chemistry B 107 (2003) 5393.CrossRefGoogle Scholar
  60. 60.
    M. A. Thompson,E. J. Menke,C. C. Martens, and R. M. Penner. J. Phys. Chem. B 110 (2006) 36.CrossRefGoogle Scholar
  61. 61.
    E. J. Menke, M. A. Thompson,C. Xiang, L. C. Yang, and R. M. Penner. Nature-Materials 5 (2006) 914.CrossRefGoogle Scholar
  62. 62.
    F. Favier, E. Walter, M. P. Zach, T. Benter, and R. M. Penner. Science 293 (2001)2227.CrossRefGoogle Scholar
  63. 63.
    E. C. Walter, F. Favier, and R. M. Penner. Anal Chem 74 (2002) 1546.CrossRefGoogle Scholar
  64. 64.
    E. J. Menke, M. A. Brown, Q. Li, J. C. Hemminger, and R. M. Penner. Langmuir 22 (2006) 10564.CrossRefGoogle Scholar
  65. 65.
    E. J. Menke, Q. Li, and R. M. Penner. Nano Letters 4 (2004) 2009.CrossRefGoogle Scholar
  66. 66.
    R. A. W. Dryfe, E. C. Walter, and R. M. Penner. Chemphyschem 5 (2004) 1879.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Reginald M. Penner
    • 1
  1. 1.Institute For Surface and Interface Science and Department of ChemistryUniversity of CaliforniaIrvineCalifornia

Personalised recommendations