Advertisement

Electrochemistry of Room-Temperature Ionic Liquids and Melts

  • Tetsuya Tsuda
  • Charles L. Hussey
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 45)

Articles about substances designated as ionic liquids have begun to appear with increasing regularity in chemistry journals around the world. The recent advent of the terms ionic liquid or ionic liquids, and the publication of numerous articles promoting the unusual properties and potential uses of these materials suggest that they are new and heretofore unrecognized substances. However, these names are just a more modern way to describe molten or fused salts. Such liquid salts have been recognized since the very beginning of modern chemistry, and they form the basis for several key industrial processes, e.g., the electrolytic production of aluminum. A careful review of the literature indicates that the ionic liquids label is almost universally applied to salts that exist in the liquid state at or proximate to room temperature, leading to the useful abbreviations RTIL or RTILs. As such, these labels provide a convenient way to differentiate low-melting salts from their highermelting cousins.

Keywords

Ionic Liquid Molten Salt Rotate Disk Electrode Solid Electrolyte Interphase Fuel Cell System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Seddon, Nature Mater. 2 (2003) 363.Google Scholar
  2. 2.
    R. D. Rogers and K. R. Seddon, Science 302 (2003) 792.Google Scholar
  3. 3.
    J. S. Wilkes, Green Chem. 4 (2002) 73.Google Scholar
  4. 4.
    K. Ui, M. Ueda, R. Hagiwara, and M. Mizuhata, Molten Salts 47 (2004) 114 (in Japanese).Google Scholar
  5. 5.
    V. C. Reinsborough, Rev. Pure and Appl. Chem. 18 (1968) 281.Google Scholar
  6. 6.
    H. L. Chum and R. A. Osteryoung, “Chemical and Electrochemical Studies in Room Temperature Aluminum-Halide-Containing Melts,” in: Ionic Liquids, p. 407, D. Inman and D. G. Lovering, eds., Plenum Press, New York, 1981.Google Scholar
  7. 7.
    C. L. Hussey, “Room Temperature Molten Salt Systems,” in: Advances in Molten Salt Chemistry, Vol. 5, p. 185, G. Mamantov and C. B. Mamantov, eds., Elsevier, Amsterdam, 1983.Google Scholar
  8. 8.
    D. G. Lovering and R. J. Gale, “Introduction,” in: Molten Salt Techniques, Vol.1, p. 1, D. G. Lovering and R. J. Gale, eds., Plenum Press, New York, 1983.Google Scholar
  9. 9.
    R. J. Gale and R. A. Osteryoung, “Haloaluminates,” in: Molten Salt Techniques, Vol. 1, p. 55, D. G. Lovering and R. J. Gale, eds., Plenum Press, New York, 1983.Google Scholar
  10. 10.
    P. Tissot, “Ionized Organic Salts,” in: Molten Salt Techniques, Vol. 1, p. 137, D. G. Lovering and R. J. Gale, eds., Plenum Press, New York, 1983.Google Scholar
  11. 11.
    R. T. Carlin and J. S. Wilkes, “Chemistry and Speciation in Room-Temperature Chloroaluminate Molten Salts,” in: Chemistry of Nonaqueous Solutions, G. Mamantov and A. I. Popov, eds., p. 277, VCH Publishers, Inc., New York, 1994.Google Scholar
  12. 12.
    K. R. Seddon, J. Chem. Tech. Biotechnol. 68 (1997) 351.Google Scholar
  13. 13.
    S. Takahashi, N. Koura, S. Kohara, M.-L. Saboungi, and L. A. Curtiss, Plasmas & Ions 2 (1999) 91.Google Scholar
  14. 14.
    R. Hagiwara and Y. Ito, J. Fluorine Chem. 105 (2000) 221; T. Tsuda and R. Hagiwara, J. Fluorine Chem. in press (10.1016/j.jfluchem.2007.10.004.).Google Scholar
  15. 15.
    S. A. Forsyth, J. M. Pringle, and D. R. MacFarlane, Aust. J. Chem. 57 (2004) 113 ; P. J. Scammells, J. L. Scott, and R. D. Singer, Aust. J. Chem. 58 (2005) 155.Google Scholar
  16. 16.
    F. Endres and S. Z. E. Abedin, Phys. Chem. Chem. Phys. 8 (2006) 2101.Google Scholar
  17. 17.
    Y. Ito and 1T. Nohira, Electrochim. Acta 45 (2000) 2611; H. Xue, R. Verma, and J. M. Shreeve, J. Fluorine Chem. 127 (2006) 159; J. Dupont and P. A. Z. Suarez, Phys. Chem. Chem. Phys. 8 (2006) 2441; Z. C. Zhang, Adv. Catal. 49 (2006) 153 ; S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, J. Phys. Chem. Ref. Data 35 (2006) 1475; K. Matsumoto and R. Hagiwara, J. Fluorine Chem. 128 (2007) 317 ; R. Hagiwara and J. S. Lee, Electrochemistry 75 (2007) 23.Google Scholar
  18. 18.
    T. Tsuda and C. L. Hussey, Interface 16(1) (2007) 42.Google Scholar
  19. 19.
    C. F. Poole, K. G. Furton, and B. R. Kersten, J. Chromatogr. Sci. 24 (1986) 400.Google Scholar
  20. 20.
    C. F. Poole, J. Chromatogr. A 1037 (2004) 49.Google Scholar
  21. 21.
    G. A. Baker, S. N. Baker, S. Pandey, and F. V. Bright, Analyst (Cambridge, U.K.) 130 (2005) 800.Google Scholar
  22. 22.
    J.-F. Liu, J. Å. Jönsson, and G.-B. Jiang, Trends Anal. Chem. 24 (2005) 20.Google Scholar
  23. 23.
    S. Pandey, Anal. Chim. Acta 556 (2006) 38; J. L. Anderson, D. W. Armstrong, and G.-T. Wei, Anal. Chem. 78 (2006) 2892; V. A. Cocalia, K. E. Gutowski, and R. D. Rogers, Coord. Chem. Rev. 250 (2006) 755.Google Scholar
  24. 24.
    A. Webber and G. E. Blomgren, “Ionic Liquids for Lithium Ion And Related Batteries,” in: Advances in Lithium-Ion Batteries, W. A. van Schalkwijk and B. Scrosati, eds., p. 185, Kluwer Academic / Plenum Publishers, New York, 2002.Google Scholar
  25. 25.
    J. S. Wilkes, “The Past, Present and Future of Ionic Liquids as Battery Electrolytes,” in: Green Industrial Applications of Ionic Liquids, R. D. Rogers, K. R. Seddon, and S. Volkov, eds., p. 295, NATO Science Series, Vol. 92, Kluwer Academic Publishers, Dordrecht, Netherlands, 2002.Google Scholar
  26. 26.
    P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3772.Google Scholar
  27. 27.
    R. Sheldon, Chem. Commun. (2001) 2399.Google Scholar
  28. 28.
    J. Dupont, R. F. de Souza, and P. A. Z. Suarez, Chem. Rev. 102 (2002) 3667.Google Scholar
  29. 29.
    U. Kragl, M. Eckstein, and N. Kaftzik, Curr. Opin. Biotechnol. 13 (2002) 565.Google Scholar
  30. 30.
    H. O.-Bourbigou and L. Magna, J. Mol. Catal. A, 182-183 (2002) 419.Google Scholar
  31. 31.
    P. J. Dyson, Transition Met. Chem. 27 (2002) 353.Google Scholar
  32. 32.
    F. van Rantwijk, R. M. Lau, and R. A. Sheldon, Trends Biotechnol. 21 (2003) 131.Google Scholar
  33. 33.
    S. Park and R. J. Kazlauskas, Curr. Opin. Biotechnol. 14 (2004) 432.Google Scholar
  34. 34.
    T. Welton, Coord. Chem. Rev. 248 (2004) 2459.Google Scholar
  35. 35.
    J. S. Wilkes, J. Mol. Catal. A 214 (2004) 11.Google Scholar
  36. 36.
    G. Mamantov, C. L. Hussey, and R. Marassi, “An Introduction to Electrochemistry in Molten Salts,” in: Techniques for Characterization of Electrodes and Electrochemical Processes, p. 471, R. Varma and J. R. Selman, eds., John Wiley & Sons, Inc., New York, 1991; C. L. Hussey, “The Electrochemistry of Room- Temperature Haloaluminate Molten Salts,” in: Chemistry of Nonaqueous Solutions, G. Mamantov and A. I. Popov, eds., p. 227, VCH Publishers, Inc., New York, 1994.Google Scholar
  37. 37.
    M. Galiński, A. Lewandowski, and I. Stpniak, Electrochim. Acta 51 (2006) 5597 ; A. P. Abbott and K. J. McKenzie, Phys. Chem. Chem. Phys. 8 (2006) 4265.Google Scholar
  38. 38.
    J. Zhang and A. M. Bond, Analyst (Cambridge, U.K.) 130 (2005) 1132.Google Scholar
  39. 39.
    G. R. Stafford and C. L. Hussey, “Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts,” in: Advances in Electrochemical Science and Engineering, R.C. Alkire and D. M. Kolb, eds., Vol. 7, p. 275, Wiley- VCH, Weinheim, 2002.Google Scholar
  40. 40.
    F. Endres, ChemPhysChem 3 (2002) 144.Google Scholar
  41. 41.
    M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou, Angew. Chem. Int. Ed. 43 (2004) 4988 ; I. J. B. Lin and C. S. Vasam, J. Organomet. Chem. 690 (2005) 3498.Google Scholar
  42. 42.
    T. Welton, Chem Rev. 99 (1999) 2071.Google Scholar
  43. 43.
    M. J. Earle and K. R. Seddon, Pure Appl. Chem. 72 (2000) 1391.Google Scholar
  44. 44.
    C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel, and R. Haag, Angew. Chem. Int. Ed. 41 (2002) 3964.Google Scholar
  45. 45.
    J. P. Canal, T. Ramnial, D. A. Dickie, and J. A. C. Clyburne, Chem. Commun. (2006) 1809 ; S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, and R. Mori, Catal. Today 115 (2006) 61; S. Chowdhury, R. S. Mohan, and J. L. Scott, Tetrahedron 63 (2007) 2363.Google Scholar
  46. 46.
    S. V. Dzyuba and R. A. Bartsch, Angew. Chem. Int. Ed. 42 (2003) 148.Google Scholar
  47. 47.
    S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, and G. Wu, Green Chem. 8 (2006) 325.Google Scholar
  48. 48.
    Transport Properties in Ionic Liquids, J. L. Copeland, Gordon and Breach Science Publishers, New York, 1974.Google Scholar
  49. 49.
    Ionic Liquids, D. Inman and D. G. Lovering, eds., Plenum Press, New York, 1981.Google Scholar
  50. 50.
    Modern Electrochemistry Second Edition, Vol. 1: Ionics, J. O’M. Bockris and A. K. N. Reddy, Plenum Press, New York, 1998.Google Scholar
  51. 51.
    Ionic Liquids: Industrial Applications for Green Chemistry, R. D. Rogers and K. R. Seddon, eds., ACS Symposium Series 818, American Chemical Society, Washington, DC, 2002.Google Scholar
  52. 52.
    Green Industrial Applications of Ionic Liquids, R. D. Rogers, K. R. Seddon, and S. Volkov, eds., NATO Science Series, Vol. 92, Kluwer, Dordrecht, Netherlands, 2002.Google Scholar
  53. 53.
    Ionic Liquids as Green Solvents: Progress and Prospects, R. D. Rogers and K. R. Seddon, eds., ACS Symposium Series 856, American Chemical Society, Washington, DC, 2003.Google Scholar
  54. 54.
    Ionic Liquids in Synthesis, P. Wasserscheid and T. Welton, eds., Wiley-VCH, Weinheim, 2003.Google Scholar
  55. 55.
    Ionic Liquids III A: Fundamentals, Progress, Challenges, and Opportunities, R. D. Rogers and K. R. Seddon, eds., ACS Symposium Series 901, American Chemical Society, Washington, DC, 2005.Google Scholar
  56. 56.
    Ionic Liquids III B: Fundamentals, Progress, Challenges, and Opportunities, R. D. Rogers and K. R. Seddon, eds., ACS Symposium Series 902, American Chemical Society, Washington, DC, 2005.Google Scholar
  57. 57.
    Ionic Liquids in Polymer Systems: Solvents, Additives, and Novel Applications, C. S. Brazel and R. D. Rogers, eds., ACS Symposium Series 913, American Chemical Society, Washington, DC, 2005.Google Scholar
  58. 58.
    Electrochemical Aspects of Ionic Liquids, H. Ohno, ed., Wiley-Interscience, New Jersey, 2005.Google Scholar
  59. 59.
    Metal Catalysed Reactions in Ionic Liquids, P. J. Dyson and T. J. Geldbach, Springer, Netherlands, 2006.Google Scholar
  60. 60.
    Proceeding Series of the International Symposium on Molten Salts, I ˜ XIV, The Electrochemical Society, Inc., Pennington, NJ, 1976˜2006.Google Scholar
  61. 61.
    R. Hagiwara, T. Hirashige, T. Tsuda, and Y. Ito, J. Fluorine Chem. 99 (1999) 1.Google Scholar
  62. 62.
    R. Hagiwara, T. Nohira, T. Shimada, T. Fujinaga, S. Konno, and T. Tsuda, ECS Transactions 3(35) (2007) 187.Google Scholar
  63. 63.
    R. Hagiwara, T. Hirashige, T. Tsuda, and Y. Ito, J. Electrochem. Soc. 149 (2002) D1.Google Scholar
  64. 64.
    R. Hagiwara, K. Matsumoto, T. Tsuda, Y. Ito, S. Kohara, K. Suzuya, H. Matsumoto, and Y. Miyazaki, J. Non-Cryst. Solids 312-314 (2002) 414.Google Scholar
  65. 65.
    K. Matsumoto, T. Tsuda, R. Hagiwara, Y. Ito, and O. Tamada, Solid State Sci. 4 (2002) 23.Google Scholar
  66. 66.
    R. Hagiwara, K. Matsumoto, Y. Nakamori, T. Tsuda, Y. Ito, H. Matsumoto, and K. Momota, J. Electrochem. Soc. 150 (2003) D195.Google Scholar
  67. 67.
    K. Matsumoto, R. Hagiwara, and Y. Ito, Electrochem. Solid-State Lett. 7 (2004) E41.Google Scholar
  68. 68.
    Y. Shodai, S. Kohara, Y. Ohishi, M. Inaba, and A. Tasaka, J. Phys. Chem. A 108 (2004) 1127.Google Scholar
  69. 69.
    K. Matsumoto and R. Hagiwara, Electrochemistry 73 (2005) 730.Google Scholar
  70. 70.
    Y. Saito, K. Hirai, K. Matsumoto, R. Hagiwara, and Y. Miyazaki, J. Phys. Chem. B. 109 (2005) 2942.Google Scholar
  71. 71.
    R. Hagiwara, Y. Nakamori, K. Matsumoto, and Y. Ito, J. Phys. Chem. B. 109 (2005) 5445.Google Scholar
  72. 72.
    M. Salanne, C. Simon, and P. Turq, J. Phys. Chem. B 110 (2006) 3504.Google Scholar
  73. 73.
    T. G. Coker, J. Ambrose, and G. J. Janz, J. Am. Chem. Soc. 92 (1970) 5293.Google Scholar
  74. 74.
    B. K. M. Chan, N.-H. Chang, and M. R. Grimmett, Aust. J. Chem. 30 (1977) 2005.Google Scholar
  75. 75.
    J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem. 21 (1982) 1263.Google Scholar
  76. 76.
    C. F. Poole, B. R. Kersten, S. J. Ho, M. E. Coddens, and K. G. Furton, J. Chromatogr. 352 (1986) 407.Google Scholar
  77. 77.
    J. Pernak, K. Sobaszkiewicz, and I. Mirska, Green Chem. 5 (2003) 52.Google Scholar
  78. 78.
    T. Mizumo, E. Marwanta, N. Matsumi, and H. Ohno, Chem. Lett. 33 (2004) 1360.Google Scholar
  79. 79.
    R. E. D. Sesto, C. Corley, A. Robertson, and J. S. Wilkes, J. Organomet. Chem. 690 (2005) 2536.Google Scholar
  80. 80.
    J. M. S. S. Esperança, H. J. R. Guedes, M. Blesic, and L. P. N. Rebelo, J. Chem. Eng. Data 51 (2006) 237.Google Scholar
  81. 81.
    J. E. Gordon and G. N. SubbaRao, J. Am. Chem. Soc. 100 (1978) 7445.Google Scholar
  82. 82.
    E. I. Cooper and C. A. Angell, Solid State Ionics 18-19 (1986) 570.Google Scholar
  83. 83.
    W. Xu, E. I. Cooper, and C. A. Angell, J. Phys. Chem. B 107 (2003) 6170.Google Scholar
  84. 84.
    T. A. Zawodzinski, Jr. and R. A. Osteryoung, Inorg. Chem. 27 (1988) 4383.Google Scholar
  85. 85.
    J. L. E. Campbell and K. E. Johnson, Inorg. Chem. 32 (1993) 3809.Google Scholar
  86. 86.
    J. L. E. Campbell, K. E. Johnson, and J. R. Torkelson, Inorg. Chem. 33 (1994) 3340.Google Scholar
  87. 87.
    M. Deetlefs, K. R. Seddon, and M. Shara, New J. Chem. 30 (2006) 317.Google Scholar
  88. 88.
    A. Bagno, C. Butts, C. Chiappe, F. D’Amico, J. C. D. Lord, D. Pieraccini, and F. Rastrelli, Org. Biomol. Chem. 3 (2005) 1624.Google Scholar
  89. 89.
    H. Luo, S. Dai, P. V. Bonnesen, and A. C. Buchanan, III, J. Alloy Compd. 418 (2006) 195.Google Scholar
  90. 90.
    M. Gorlov, H. Pettersson, A. Hagfeldt, and L. Kloo, Inorg. Chem. 46 (2007) 3566.Google Scholar
  91. 91.
    E. I. Cooper and C. A. Angell, Solid State Ionics 9-10 (1983) 617.Google Scholar
  92. 92.
    S. A. Forsyth and D. R. MacFarlane, J. Mater. Chem. 13 (2003) 2451.Google Scholar
  93. 93.
    Y. L. Yagupolskii, T. M. Sokolenko, K. I. Petko, and L. M. Yagupolskii, J. Fluorine Chem. 126 (2005) 669.Google Scholar
  94. 94.
    O. D. Gupta, P. D. Armstrong, and J. M. Shreeve, Tetrahedron Lett. 44 (2003) 9367.Google Scholar
  95. 95.
    F. Mazille, Z. Fei, D. Kuang, D. Zhao, S. M. Zakeeruddin, M. Grätzel, and P. J. Dyson, Inorg. Chem. 45 (2006) 1585.Google Scholar
  96. 96.
    H. Paulsson, M. Berggrund, E. Svantesson, A. Hagfeldt, and L. Kloo, Sol. Energy Mater. Sol. Cells 82 (2004) 345.Google Scholar
  97. 97.
    M. Deetlefs, K. R. Seddon, and M. Shara, Phys. Chem. Chem. Phys. 8 (2006) 642.Google Scholar
  98. 98.
    J.-P. Mikkola, P. Virtanen, and R. Sjöholm, Green Chem. 8 (2006) 250.Google Scholar
  99. 99.
    J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc., Chem. Commun. (1992) 965.Google Scholar
  100. 100.
    A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, J. Electrochem. Soc. 146 (1999) 1687.Google Scholar
  101. 101.
    A. Noda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 105 (2001) 4603.Google Scholar
  102. 102.
    S. Forsyth, J. Golding, D. R. MacFarlane, and M. Forsyth, Electrochim. Acta 46 (2001) 1753.Google Scholar
  103. 103.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Lett. 33 (2004) 886.Google Scholar
  104. 104.
    H. Ohno, “Neutralized Amines,” in: Electrochemical Aspects of Ionic Liquids, p. 237, H. Ohno, ed., Wiley-Interscience, New Jersey, 2005.Google Scholar
  105. 105.
    G.-H. Tao, L. He, N. Sun, and Y. Kou, Chem. Commun. (2005) 3562.Google Scholar
  106. 106.
    N. K. Sharma, M. D. Tickell, J. L. Anderson, J. Kaar, V. Pino, B. F. Wicker, D. W. Armstrong, J. H. Davis, Jr., and A. J. Russell, Chem. Commun. (2006) 646.Google Scholar
  107. 107.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Eur. J. 12 (2006) 2196.Google Scholar
  108. 108.
    S. Guo, Z. Du, S. Zhang, D. Li, Z. Li, and Y. Deng, Green Chem. 8 (2006) 296.Google Scholar
  109. 109.
    D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 128 (2006) 7732.Google Scholar
  110. 110.
    W. T. Ford, R. J. Hauri, and D. J. Hart, J. Org. Chem. 38 (1973) 3916.Google Scholar
  111. 111.
    W. T. Ford and D. J. Hart, J. Am. Chem. Soc. 96 (1974) 3261.Google Scholar
  112. 112.
    W. T. Ford, Anal. Chem. 47 (1975) 1125.Google Scholar
  113. 113.
    W. T. Ford and D. J. Hart, J. Phys. Chem. 80 (1976) 1002.Google Scholar
  114. 114.
    P. Wasserscheid, M. Sesing, and W. Korth, Green Chem. 4 (2002) 134.Google Scholar
  115. 115.
    N. Nishi, S. Imakura, and T. Kakiuchi, Anal. Chem. 78 (2006) 2726.Google Scholar
  116. 116.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, ChemPhysChem 6 (2005) 1324.Google Scholar
  117. 117.
    Z.-B. Zhou, M. Takeda, and M. Ue, J. Fluorine Chem. 123 (2003) 127.Google Scholar
  118. 118.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Eur. J. 10 (2004) 6581.Google Scholar
  119. 119.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Eur. J. 11 (2005) 752.Google Scholar
  120. 120.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Lett. 33 (2004) 680.Google Scholar
  121. 121.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Lett. 33 (2004) 1636.Google Scholar
  122. 122.
    Z.-B. Zhou, M. Takeda, and M. Ue, J. Fluorine Chem. 125 (2004) 471.Google Scholar
  123. 123.
    D. Zhao, Z. Fei, C. A. Ohlin, G. Laurenczy, and P. J. Dyson, Chem. Commun. (2004) 2500.Google Scholar
  124. 124.
    J. Fuller, R. T. Carlin, H. C. De Long, and D. Haworth, J. Chem. Soc., Chem. Commun. (1994) 299; Z. Mu, W. Liu, S. Zhang, and F. Zhou, Chem. Lett. 33 (2004) 524.Google Scholar
  125. 125.
    V. R. Koch, L. A. Dominey, C. Nanjundiah, and M. J. Ondrechen, J. Electrochem. Soc. 143 (1996) 798.Google Scholar
  126. 126.
    J. Golding, N. Hamid, D. R. MacFarlane, M. Forsyth, C. Forsyth, C. Collins, and J. Huang, Chem. Mater. 13 (2001) 558.Google Scholar
  127. 127.
    P. Wasserscheid, A. Bösmann, and C. Bolm, Chem. Commun. (2002) 200.Google Scholar
  128. 128.
    J. R. Harjani, T. Friščić, L. R. MacGillivray, and R. D. Singer, Inorg. Chem. 45 (2006) 10025.Google Scholar
  129. 129.
    J. Zhang and A. M. Bond, J. Phys. Chem. B 108 (2004) 7363.Google Scholar
  130. 130.
    N. V. Ignat’ev, U. W.-Biermann, A. Kucheryna, G. Bissky, and H. Willner, J. Fluorine Chem. 126 (2005) 1150.Google Scholar
  131. 131.
    K. Matsumoto, R. Hagiwara, R. Yoshida, Y. Ito, Z. Mazej, P. Benkič, B. Žemva, O. Tamada, H. Yoshino, and S. Matsubara, Dalton Trans. (2004) 144.Google Scholar
  132. 132.
    Y. Chauvin, L. Mussmann, and H. Olivier, Angew. Chem. Int. Ed. 34 (1995) 2698.Google Scholar
  133. 133.
    C. E. Song, W. H. Shim, E. J. Roh, and J. H. Choi, Chem. Commun. (2000) 1695.Google Scholar
  134. 134.
    J. L. Anderson, J. Ding, T. Welton, and D. W. Armstrong, J. Am. Chem. Soc. 124 (2002) 14247.Google Scholar
  135. 135.
    M. Ue, M. Takeda, T. Takahashi, and M. Takehara, Electrochem. Solid-State Lett. 5 (2002) A119.Google Scholar
  136. 136.
    K. Matsumoto, R. Hagiwara, and Y. Ito, J. Fluorine Chem. 115 (2002) 133.Google Scholar
  137. 137.
    K. Matsumoto and R. Hagiwara, J. Fluorine Chem. 126 (2005) 1095.Google Scholar
  138. 138.
    N. Bicak, J. Mol. Liq. 116 (2005) 15.Google Scholar
  139. 139.
    P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, Inorg. Chem. 35 (1996) 1168.Google Scholar
  140. 140.
    M. J. Earle, P. B. McCormac, and K. R. Seddon, Green Chem. 1 (1999) 23.Google Scholar
  141. 141.
    E. I. Cooper and E. J. M. O’Sullivan, in: Proceedings of the Eighth International Symposium on Molten Salts, p. 386, R. J. Gale, G. Blomgren, and H. Kojima, eds., PV92-16, The Electrochemical Society, Inc., Pennington, NJ, 1992.Google Scholar
  142. 142.
    A. R. Katritzky, H. Yang, D. Zhang, K. Kirichenko, M. Smiglak, J. D. Holbrey, W. M. Reichert, and R. D. Rogers, New J. Chem. 30 (2006) 349.Google Scholar
  143. 143.
    S. A. Forsyth, K. J. Fraser, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, Green Chem. 8 (2006) 256. 160 Tetsuya Tsuda and Charles L. Hussey Google Scholar
  144. 144.
    H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, and M. Kono, J. Power Sources 160 (2006) 1308.Google Scholar
  145. 145.
    M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, and M. Kono, J. Power Sources 162 (2006) 658.Google Scholar
  146. 146.
    J. Sun, M. Forsyth, and D. R. MacFarlane, J. Phys. Chem. B 102 (1998) 8858; D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth, J. Phys. Chem. B 103 (1999) 4164.Google Scholar
  147. 147.
    M. Yoshizawa, W. Ogihara, and H. Ohno, Electrochem. Solid-State Lett. 4 (2001) E25.Google Scholar
  148. 148.
    H. Sakaebe and H. Matsumoto, Electrochem. Commun. 5 (2003) 594.Google Scholar
  149. 149.
    K.-S. Kim, S. Choi, D. Demberelnyamba, H. Lee, J. Oh, B.-B. Lee, and S.-J. Mun, Chem. Commun. (2004) 828.Google Scholar
  150. 150.
    P.-Y. Chen and C. L. Hussey, Electrochim. Acta 49 (2004) 5125.Google Scholar
  151. 151.
    H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 109 (2005) 6103.Google Scholar
  152. 152.
    N. Nishimura and H. Ohno, “Ionic Liquidized DNA,” in: Electrochemical Aspects of Ionic Liquids, p. 337, H. Ohno, ed., Wiley-Interscience, New Jersey, 2005.Google Scholar
  153. 153.
    M. Y.-Fujita, D. R. MacFarlane, P. C. Howlett, and M. Forsyth, Electrochem. Commun. 8 (2006) 445.Google Scholar
  154. 154.
    J. S. Lee, N. D. Quan, J. M. Hwang, J. Y. Bae, H. Kim, B. W. Cho, H. S. Kim, and H. Lee, Electrochem. Commun. 8 (2006) 460.Google Scholar
  155. 155.
    C.-M. Jin, C. Ye, B. S. Phillips, J. S. Zabinski, X. Liu, W. Liu, and J. M. Shreeve, J. Mater. Chem. 16 (2006) 1529.Google Scholar
  156. 156.
    Y. A.-Lebdeh, A. Abouimrane, P.-J. Alarco, and M. Armand, J. Power Sources 154 (2006) 255.Google Scholar
  157. 157.
    M. L. Patil, C. V. L. Rao, K. Yonezawa, S. Takizawa, K. Onitsuka, and H. Sasai, Org. Lett. 8 (2006) 227.Google Scholar
  158. 158.
    J.-F. Huang, H. Luo, and S. Dai, J. Electrochem. Soc. 153 (2006) J9; M. Y.- Fujita, K. Johansson, P. Newman, D. R. MacFarlane, and M. Forsyth, Tetrahedron Lett. 47 (2006) 2755.Google Scholar
  159. 159.
    J.-F. Huang, G. A. Baker, H. Luo, K. Hong, Q.-F. Li, N. J. Bjerrum, and S. Dai, Green Chem. 8 (2006) 599.Google Scholar
  160. 160.
    J. M. Pringle, J. Golding, K. Baranyai, C. M. Forsyth, G. B. Deacon, J. L. Scott, and D. R. MacFarlane, New J. Chem. 27 (2003) 1504.Google Scholar
  161. 161.
    H. Matsumoto, H. Kageyama, and Y. Miyazaki, Chem. Commun. (2002) 1726.Google Scholar
  162. 162.
    P. Walden, Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg (1914) 405.Google Scholar
  163. 163.
    S. Sugden and H. Wilkins, J. Chem. Soc. (1929) 1291.Google Scholar
  164. 164.
    G.-H. Tao, L. He, W.-S. Liu, L. Xu, W. Xiong, T. Wang, and Y. Kou, Green Chem. 8 (2006) 639.Google Scholar
  165. 165.
    S. I. Lall, D. Mancheno, S. Castro, V. Behaj, J. I. Cohen, and R. Engel, Chem. Commun. (2000) 2413.Google Scholar
  166. 166.
    S. Lall, V. Behaj, D. Mancheno, R. Casiano, M. Thomas, A. Rikin, J. Gaillard, R. Raju, A. Scumpia, S. Castro, R. Engel, and J. I. Cohen, Synthesis 11 (2002) 1530.Google Scholar
  167. 167.
    B. S. Lalia and S. S. Sekhon, Chem. Phys. Lett. 425 (2006) 294.Google Scholar
  168. 168.
    W. Ogihara, M. Yoshizawa, and H. Ohno, Chem. Lett. (2002) 880.Google Scholar
  169. 169.
    P. Kölle and R. Dronskowski, Inorg. Chem. 43 (2004) 2803.Google Scholar
  170. 170.
    T. B. Scheffler and M. S. Thomson, in: Proceedings of the Seventh International Symposium on Molten Salts, p. 281, C. L. Hussey, S. N. Flengas, J. S. Wilkes, and Y. Ito, eds., PV90-17, The Electrochemical Society, Inc., Pennington, NJ, 1990.Google Scholar
  171. 171.
    P. B. Hitchcock, R. J. Lewis, and T. Welton, Polyhedron 12 (1993) 2039.Google Scholar
  172. 172.
    M. Morimitsu, T. Matsuo, and M. Matsunaga, in: Proceedings of the Twelfth International Symposium on Molten Salts, p. 117, P. C. Trulove, H. C. De Long, G. R. Stafford, and S. Deki, eds., PV99-41, The Electrochemical Society, Inc., Pennington, NJ, 1999.Google Scholar
  173. 173.
    G. F. Reynolds and C. J. Dymek, Jr., J. Power Sources 15 (1985) 109.Google Scholar
  174. 174.
    Y. Katayama, I. Konishiike, T. Miura, and T. Kishi, J. Power Sources 109 (2002) 327.Google Scholar
  175. 175.
    Y. Yoshida, A. Otsuka, G. Saito, S. Natsume, E. Nishibori, M. Takata, M. Sakata, M. Takahashi, and T. Yoko, Bull. Chem. Soc. Jpn. 78 (2005) 1921.Google Scholar
  176. 176.
    M. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, Inorg. Chem. 40 (2001) 2298.Google Scholar
  177. 177.
    J.-Z. Yang, W.-G. Xu, Q.-G. Zhang, Y. Jin., and Z.-H. Zhang, J. Chem. Thermodyn. 35 (2003) 1855.Google Scholar
  178. 178.
    A. P. Abbott, G. Capper, D. L. Davies, and R. Rasheed, Inorg. Chem. 43 (2004) 3447.Google Scholar
  179. 179.
    Q.-G. Zhang, J.-Z. Yang, X.-M. Lu, J.-S. Gui, and M. Huang, Fluid Phase Equilib. 226 (2004) 207.Google Scholar
  180. 180.
    S. Hayashi and H. Hamaguchi, Chem. Lett. 34 (2005) 740.Google Scholar
  181. 181.
    Y. Yoshida, J. Fujii, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, and T. Yoko, Synth. Mat. 153 (2005) 421.Google Scholar
  182. 182.
    Y. Yoshida and G. Saito, J. Mater. Chem. 16 (2006) 1254.Google Scholar
  183. 183.
    S. Hayashi, S. Saha, and H. Hamaguchi, IEEE Trans. Magn. 42 (2006) 12.Google Scholar
  184. 184.
    P. B. Hitchcock, K. R. Seddon, and T. Welton, J. Chem. Soc., Dalton Trans. (1993) 2639.Google Scholar
  185. 185.
    J. T. Yoke III, J. F. Weiss, and G. Tollin, Inorg. Chem. 2 (1963) 1210.Google Scholar
  186. 186.
    D. D. Axtell, B. W. Good, W. W. Porterfield, and J. T. Yoke, J. Am. Chem. Soc. 95 (1973) 4555.Google Scholar
  187. 187.
    D. D. Axtell and J. T. Yoke, Inorg. Chem. 12 (1973) 1265.Google Scholar
  188. 188.
    S. A. Bolkan and J. T. Yoke, J. Chem. Eng. Data 31 (1986) 194.Google Scholar
  189. 189.
    N. Koura, A, Suzuki, and S. Ito, in: Proceedings of the Ninth International Symposium on Molten Salts, p. 70, M.-L. Saboungi and H. Kojima, eds., PV93-9, The Electrochemical Society, Inc., Pennington, NJ, 1993.Google Scholar
  190. 190.
    E. R. Schreiter, J. E. Stevens, M. F. Ortwerth, and R. G. Freeman, Inorg. Chem. 38 (1999) 3935.Google Scholar
  191. 191.
    M. Hasan, I. V. Kozhevnikov, M. R. H. Siddiqui, A. Steiner, and N. Winterton, Inorg. Chem. 38 (1999) 5637.Google Scholar
  192. 192.
    A. J. Easteal and C. A. Angell, J. Phys. Chem. 74 (1970) 3987.Google Scholar
  193. 193.
    A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah, Chem. Commun. (2001) 2010.Google Scholar
  194. 194.
    V. Lecocq, A. Graille, C. C. Santini, A. Baudouin, Y. Chauvin, J. M. Basset, L. Arzel, D. Bouchu, and B. Fenet, New J. Chem. 29 (2005) 700.Google Scholar
  195. 195.
    S. P. Wicelinski, R. J. Gale, and J. S. Wilkes, J. Electrochem. Soc. 134 (1987) 262.Google Scholar
  196. 196.
    M. W. Verbrugge and M. K. Carpenter, AIChE J. 36 (1990) 1097.Google Scholar
  197. 197.
    M. K. Carpenter and M. W. Verbrugge, J. Electrochem. Soc. 137 (1990) 123.Google Scholar
  198. 198.
    J.-Z. Yang, P. Tian, W.-G. Xu, B. Xu, and S.-Z. Liu, Thermochim. Acta 412 (2004) 1.Google Scholar
  199. 199.
    M. K. Carpenter and M. W. Verbrugge, US Patent US 5,264,111A (1993).Google Scholar
  200. 200.
    M. K. Carpenter and M. W. Verbrugge, J. Mater. Res. 9 (1994) 2584.Google Scholar
  201. 201.
    S.-L. Zang, Q.-G. Zhang, M. Huang, B. Wang, and J.-Z. Yang, Fluid Phase Equilib. 230 (2005) 192.Google Scholar
  202. 202.
    W. Guan, J.-Z. Yang, L. Li, H. Wang, and Q. G. Zhang, Fluid Phase Equilib. 239 (2006) 161.Google Scholar
  203. 203.
    J.-Z. Yang, Q.-G. Zhang, and F. Xue, J. Mol. Liq. 128 (2006) 81.Google Scholar
  204. 204.
    G. W. Parshall, J. Am. Chem. Soc. 94 (1972) 8716.Google Scholar
  205. 205.
    F. N. Jones, J. Org. Chem. 32 (1967) 1667.Google Scholar
  206. 206.
    G. Ling and N. Koura, Denki Kagaku 65 (1997) 149 (in Japanese).Google Scholar
  207. 207.
    N. Koura, T. Umebayashi, Y. Idemoto, and G. Ling, Electrochemistry 67 (1999) 684.Google Scholar
  208. 208.
    P. Wasserscheid and H. Waffenschmidt, J. Mol. Catal. A 164 (2000) 61.Google Scholar
  209. 209.
    H. Matsuzawa, R. Nakai, K. Ui, N. Koura, and G. Ling, Electrochemistry 73 (2005) 715.Google Scholar
  210. 210.
    Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, and T. Yoko, Inorg. Chem. 43 (2004) 1458.Google Scholar
  211. 211.
    Y. Yoshida, J. Fujii, G. Saito, T. Hiramatsu, and N. Sato, J. Mater. Chem. 16 (2006) 724.Google Scholar
  212. 212.
    D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, and G. B. Deacon, Chem. Commun. (2001) 1430.Google Scholar
  213. 213.
    D. R. MacFarlane, S. A. Forsyth, J. Golding, and G. B. Deacon, Green Chem. 4 (2002) 444.Google Scholar
  214. 214.
    S. A. Forsyth, S. R. Batten, Q. Dai, and D. R. MacFarlane, Aust. J. Chem. 57 (2004) 121.Google Scholar
  215. 215.
    D. Gerhard, S. C. Alpaslan, H. J. Gores, M. Uerdingen, and P. Wasserscheid, Chem. Commun. (2005) 5080.Google Scholar
  216. 216.
    G. J. Janz, R. D. Reeves, and A. T. Ward, Nature 204 (1964) 1188.Google Scholar
  217. 217.
    J. E. Gordon, J.Am. Chem. Soc. 87 (1965) 4347.Google Scholar
  218. 218.
    T. G. Coker, B. Wunderlich, and G. J. Janz, Trans. Faraday Soc. 73 (1969) 3361.Google Scholar
  219. 219.
    J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, and D. R. MacFarlane, J. Mater. Chem. 12 (2002) 3475.Google Scholar
  220. 220.
    P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. H.-Baker, and M. Grätzel, J. Am. Chem. Soc. 126 (2004) 7164.Google Scholar
  221. 221.
    H. S. Kim, Y. J. Kim, H. Lee, K. Y. Park, C. Lee, and C. S. Chin, Angew. Chem. Int. Ed. 41 (2002) 4300.Google Scholar
  222. 222.
    W. Xu, L.-M. Wang, R. A. Nieman, and C. A. Angell, J. Phys. Chem. B 107 (2003) 11749.Google Scholar
  223. 223.
    C. G. Swain, A. Ohno, D. K. Roe, R. Brown, and T. Maugh, II, J. Am. Chem. Soc. 89 (1967) 2648.Google Scholar
  224. 224.
    Y. Fukaya, A. Sugimoto, and H. Ohno, Biomacromolecules 7 (2006) 3295.Google Scholar
  225. 225.
    R. P. Seward, J. Am. Chem. Soc. 73 (1951) 515.Google Scholar
  226. 226.
    P. Wasserscheid, R. van Hal, and A. Bösmann, Green Chem. 4 (2002) 400.Google Scholar
  227. 227.
    J. D. Holbrey, W. M. Reichert, R. P. Swatloski, G. A. Broker, W. R. Pitner, K. R. Seddon, and R. D. Rogers, Green Chem. 4 (2002) 407.Google Scholar
  228. 228.
    J.-Z. Yang, X.-M. Lu, J.-S. Gui, and W.-G. Xu, Green Chem. 6 (2004) 541.Google Scholar
  229. 229.
    S. Baj, A. Chrobok, and S. Derfla, Green Chem. 8 (2006) 292.Google Scholar
  230. 230.
    A. Oehlke, K. Hofmann, and S. Spange, New J. Chem. 30 (2006) 533; S. Himmler, S. Hörmann, R. van Hal, P. S. Schulz, and P. Wasserscheid, Green Chem. 8 (2006) 887.Google Scholar
  231. 231.
    T. Mukai, M. Yoshio, T. Kato, and H. Ohno, Chem. Lett. 33 (2004) 1630.Google Scholar
  232. 232.
    N. Nishi, T. Kawakami, F. Shigematsu, M. Yamamoto, and T. Kakiuchi, Green Chem. 8 (2006) 349.Google Scholar
  233. 233.
    W. Ogihara, M. Yoshizawa, and H. Ohno, Chem. Lett. 33 (2004) 1022.Google Scholar
  234. 234.
    K. Fukumoto, M. Yoshizawa, and H. Ohno, J. Am. Chem. Soc. 127 (2005) 2398; J. Kagimoto, K. Fukumoto, and H. Ohno, Chem. Commun. (2006) 2254; J.-Z. Yang, Q.-G. Zhang, B. Wang, and J. Tong, J. Phys. Chem. B 110 (2006) 22521; K. Fukumoto and H. Ohno, Chem. Commun. (2006) 3081.Google Scholar
  235. 235.
    A. S. Larsen, J. D. Holbrey, F. S. Tham, and C. A. Reed, J. Am. Chem. Soc. 122 (2000) 7264.Google Scholar
  236. 236.
    J. van den Broeke, F. Winter, B.-J. Deelman, and G. van Koten, Org. Lett. 4 (2002) 3851; J. van den Broeke, M. Stam, M. Lutz, H. Kooijman, A. L. Spek, B.-J. Deelman, and G. van Koten, Eur. J. Inorg. Chem. (2003) 2798.Google Scholar
  237. 237.
    A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, J. Am. Chem. Soc. 126 (2004) 9142.Google Scholar
  238. 238.
    O. D. Gupta, B. Twamley, and J. M. Shreeve, Tetrahedron Lett. 45 (2004) 1733; O. D. Gupta, B. Twamley, and J. M. Shreeve, J. Fluorine Chem. 126 (2005) 1222 ; O. D. Gupta, B. Twamley, and J. M. Shreeve, J. Fluorine Chem. 127 (2006) 263.Google Scholar
  239. 239.
    H. Shobukawa, H. Tokuda, S.-I. Tabata, and M. Watanabe, Electrochim. Acta 50 (2004) 305.Google Scholar
  240. 240.
    H. Shobukawa, H. Tokuda, M. A. B. H. Susan, and M. Watanabe, Electrochim. Acta 50 (2005) 3872.Google Scholar
  241. 241.
    X. Jin, L. Yu, D. Garcia, R. X. Ren, and X. Zeng, Anal. Chem. 78 (2006) 6980.Google Scholar
  242. 242.
    M. Yoshizawa and H. Ohno, Chem. Commun. (2004) 1828.Google Scholar
  243. 243.
    M. Yoshizawa and H. Ohno, Chem. Lett. 33 (2004) 1594.Google Scholar
  244. 244.
    M. Yoshizawa, A. Narita, and H. Ohno, “Zwitterionic Liquids,” in: Electrochemical Aspects of Ionic Liquids, p. 245, H. Ohno, ed., Wiley-Interscience, New Jersey, 2005.Google Scholar
  245. 245.
    A. Narita, W. Shibayama, K. Sakamoto, T. Mizumo, N. Matsumi, and H. Ohno, Chem. Commun. (2006) 1926.Google Scholar
  246. 246.
    A. Narita, W. Shibayama, and H. Ohno, J. Mater. Chem. 16 (2006) 1475; A. Narita, W. Shibayama, K. Sakamoto, T. Mizumo, N. Matsumi, and H. Ohno, Chem. Commun. (2006) 1926.Google Scholar
  247. 247.
    S. A. A. Zaidi and Z. A. Siddiqi, J. Inorg. Nucl. Chem. 37 (1975) 1806.Google Scholar
  248. 248.
    M. Gambino and J. P. Bros, Thermochim. Acta 127 (1988) 223.Google Scholar
  249. 249.
    H. Liang, H. Li, Z. Wang, F. Wu, L. Chen, and X. Huang, J. Phys. Chem. B 105 (2001) 9966.Google Scholar
  250. 250.
    Y. Tong, P. Liu, L. Liu, and Q. Yang, J. Rare Earths 19 (2001) 275.Google Scholar
  251. 251.
    A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Chem. Commun. (2003) 70.Google Scholar
  252. 252.
    G. Imperato, E. Eibler, J. Niedermarier, and B. König, Chem. Commun. 1170 (2005).Google Scholar
  253. 253.
    A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and P. Shikotra, Inorg. Chem. 44 (2005) 6497.Google Scholar
  254. 254.
    J.-H. Liao, P.-C. Wu, and Y.-H. Bai, Inorg. Chem. Commun. 8 (2005) 390Google Scholar
  255. 255.
    G. E. McManis, A. N. Fletcher, D. E. Bliss, and M. H. Miles, J. Electroanal. Chem. 190 (1985) 171.Google Scholar
  256. 256.
    R. Chen, F. Wu, H. Liang, L. Li, and B. Xu, J. Electrochem. Soc. 152 (2005) A1979.Google Scholar
  257. 257.
    P. Liu, Y. Du, Q. Yang, Y. Tong, and G. A. Hope, J. Electrochem. Soc. 153 (2006) C57.Google Scholar
  258. 258.
    R. A. Wallace and P. F. Bruins, J. Electrochem. Soc. 114 (1967) 209.Google Scholar
  259. 259.
    R. A. Wallace and P. F. Bruins, J. Electrochem. Soc. 114 (1967) 212.Google Scholar
  260. 260.
    V. Bartocci, M. Gusteri, R. Marassi, F. Pucciarelli, and P. Cescon, J. Electroanal. Chem. 94 (1978) 153.Google Scholar
  261. 261.
    Y. Hu, H. Li, X. Huang, and L. Chen, Electrochem. Commun. 6 (2004) 28.Google Scholar
  262. 262.
    Y. Hu, Z. Wang, H. Li, X. Huang, and L. Chen, J. Electrochem. Soc. 151 (2004) A1424.Google Scholar
  263. 263.
    Y. Hu, Z. Wang, X. Huang, and L. Chen, Solid State Ionics 175 (2004) 277.Google Scholar
  264. 264.
    Y. Hu, Z. Wang, H. Li, X. Huang, and L. Chen, Vib. Spectrosc. 37 (2005) 1.Google Scholar
  265. 265.
    Y. Hu, Z. Wang, H. Li, X. Huang, and L. Chen, Spectrochim. Acta A 61 (2005) 403.Google Scholar
  266. 266.
    Y. Hu, Z. Wang, H. Li, X. Huang, and L. Chen, Spectrochim. Acta A 61 (2005) 2009.Google Scholar
  267. 267.
    G. B. Appetecchi, S. Scaccia, C. Tizzani, F. Alessandrini, and S. Passerini, J. Electrochem. Soc ., 153 (2006) A1685.Google Scholar
  268. 268.
    M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, and T. Welton, Anal. Chem. 79 (2007) 758.Google Scholar
  269. 269.
    M. E. van Valkenburg, R. L. Vaughn, M. Williams, and J. S. Wilkes, in: Proceedings of the Thirteenth International Symposium on Molten Salts, p. 112, P. C. Trulove, H. C. De Long, R. A. Mantz, G. R. Stafford, and M. Matsunaga, eds., 2002-19, The Electrochemical Society, Inc., Pennington, NJ, 2002; M. E.Van Valkenburg, R. L. Vaughn, M. Williams, and J. S. Wilkes, Thermochim. Acta 425 (2005) 181.Google Scholar
  270. 270.
    D. M. Fox, W. H. Awad, J. W. Gilman, P. H. Maupin, H. C. De Long, and P. C. Trulove, Green Chem. 5 (2003) 724.Google Scholar
  271. 271.
    K. J. Baranyai, G. B. Deacon, D. R. MacFarlane, J. M. Pringle, and J. L. Scott, Aust. J. Chem. 57 (2004) 145.Google Scholar
  272. 272.
    M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Thermochim. Acta 412 (2000) 47.Google Scholar
  273. 273.
    D. M. Fox, J. W. Gilman, H. C. De Long, and P. C. Trulove, J. Chem. Thermodyn. 37 (2005) 900.Google Scholar
  274. 274.
    T. J. Wooster, K. M. Johanson, K. J. Fraser, D. R. MacFarlane, and J. L. Scott, Green Chem. 8 (2006) 691.Google Scholar
  275. 275.
    W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, Jr., T. E. Sutto, J. Callahan, P. C. Trulove, H. C. De Long, and D. M. Fox, Thermochim. Acta 409 (2004) 3.Google Scholar
  276. 276.
    H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermochim. Acta 357-358 (2000) 97.Google Scholar
  277. 277.
    J. E. Gordon, J. Org. Chem. 30 (1965) 2760.Google Scholar
  278. 278.
    S. J. Abraham and W. J. Criddle, J. Anal. Appl. Pyrolysis 7 (1985) 337.Google Scholar
  279. 279.
    S. J. Abraham and W. J. Criddle, J. Anal. Appl. Pyrolysis 9 (1985) 65.Google Scholar
  280. 280.
    C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, and J. F. Brennecke, J. Chem. Eng. Data 49 (2004) 954.Google Scholar
  281. 281.
    A. G. Glenn and P. B. Jones, Tetrahedron Lett. 45 (2004) 6967.Google Scholar
  282. 282.
    K. R. Seddon, A. Stark, and M.-J. Torres, Pure Appl. Chem. 72 (2000) 2275.Google Scholar
  283. 283.
    J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green Chem. 3 (2001) 156.Google Scholar
  284. 284.
    B. D. Fitchett, T. N. Knepp, and J. C. Conboy, J. Electrochem. Soc. 151 (2004) E219.Google Scholar
  285. 285.
    J. Jacquemin, P. Husson, A. A. H. Padua, and V. Majer, Green Chem. 8 (2006) 172.Google Scholar
  286. 286.
    J. A. Widegren, A. Laesecke, and J. W. Magee, Chem. Commun. (2005) 1610.Google Scholar
  287. 287.
    T. Katase, T. Onishi, S. Imashuku, K. Murase, T. Hirato, and Y. Awakura, Electrochemistry 73 (2005) 686.Google Scholar
  288. 288.
    H. Matsumoto, “Electrochemical Windows of Room-Temperature Ionic Liquids,” in: Electrochemical Aspects of Ionic Liquids, p. 35, H. Ohno, ed., Wiley- Interscience, New Jersey, 2005.Google Scholar
  289. 289.
    T. Tsuda, C. L. Hussey, H. Luo, and S. Dai, J. Electrochem. Soc. 153 (2006) D171.Google Scholar
  290. 290.
    S. Sahami and R. A. Osteryoung, Anal. Chem. 55 (1983) 1970.Google Scholar
  291. 291.
    L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, Phys. Chem. Chem. Phys. 3 (2001) 5192.Google Scholar
  292. 292.
    C. D. Tran, S. H. D. P. Lacerda, and D. Oliveira, Appl. Spectrosc. 57 (2003) 152.Google Scholar
  293. 293.
    R. P. Swatloski, J. D. Holbrey, and R. D. Rogers, Green Chem. 5 (2003) 361.Google Scholar
  294. 294.
    S. Saha and H. Hamaguchi, J. Phys. Chem. B 110 (2006) 2777.Google Scholar
  295. 295.
    T. Tsuda, C. L. Hussey, H. Luo, and S. Dai, ECS Transactions 1(13) (2006) 25.Google Scholar
  296. 296.
    A. E. Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin, and R. D. Rogers, Ind. Eng. Chem. Res. 39 (2000) 3596.Google Scholar
  297. 297.
    P. Wasserscheid. R. van Hal, and A. Bösmann, in: Proceedings of the Thirteenth International Symposium on Molten Salts, p. 146, P. C. Trulove, H. C. De Long, R. A. Mantz, G. R. Stafford, and M. Matsunaga, eds., 2002-19, The Electrochemical Society, Inc., Pennington, NJ, 2002.Google Scholar
  298. 298.
    C. Villagrán, M. Deetlefs, W. R. Pitner, and C. Hardacre, Anal. Chem. 76 (2004) 2118.Google Scholar
  299. 299.
    E. Amigues, C. Hardacre, G. Keane, M. Migaud, and M. O’Neill, Chem. Commun. (2006) 72.Google Scholar
  300. 300.
    H. R. Clark and M. M. Jones, J. Am. Chem. Soc. 92 (1970) 816.Google Scholar
  301. 301.
    S. Radosavljević, V. Šćepanović, S. Stević, and D. Milojković, J. Fluorine Chem. 13 (1979) 465.Google Scholar
  302. 302.
    P. C. Trulove and R. A. Mantz, “Electrochemical Properties of Ionic Liquids,” in: Ionic Liquids in Synthesis, p. 103, P. Wasserscheid and T. Welton, eds., Wiley- VCH, Weinheim, 2003.Google Scholar
  303. 303.
    J. H. Davis, Jr., C. M. Gordon, C. Hilgers, and P. Wasserscheid, “Synthesis and Purification of Ionic Liquids,” in: Ionic Liquids in Synthesis, p. 7, P. Wasserscheid and T. Welton, eds., Wiley-VCH, Weinheim, 2003.Google Scholar
  304. 304.
    I. Billard, G. Moutiers, A. Labet, A. E. Azzi, C. Gaillard, C. Mariet, and K. Lützenkirchen, Inorg. Chem. 42 (2003) 1726.Google Scholar
  305. 305.
    Y. Katayama, H. Onodera, M. Yamagata, and T. Miura, J. Electrochem. Soc. 151 (2004) A59.Google Scholar
  306. 306.
    R. G. Evans, O. V. Klymenko, S. A. Saddoughi, C. Hardacre, and R. G. Compton, J. Phys. Chem. B 108 (2004) 7878.Google Scholar
  307. 307.
    I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, and J. W. Weidner, Electrochem. Solid-State Lett. 4 (2001) D16.Google Scholar
  308. 308.
    M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon, and R. G. Compton, J. Phys. Chem. A 107 (2003) 8872.Google Scholar
  309. 309.
    D. Zhang, T. Okajima, F. Matsumoto, and T. Ohsaka, J. Elctrochem. Soc. 151 (2004) D31.Google Scholar
  310. 310.
    M. C. Buzzeo, C. Hardacre, and R. G. Compton, Anal. Chem. 76 (2004) 4583.Google Scholar
  311. 311.
    Y. Katayama, K. Sekiguchi, M. Yamagata, and T. Miura, J. Electrochem. Soc. 152 (2005) E247.Google Scholar
  312. 312.
    K. Ding, T. Okajima, and T. Ohsaka, Electrochemistry 73 (2007) 35.Google Scholar
  313. 313.
    M. T. Carter, C. L. Hussey, S. K. D. Strubinger, and R. A. Osteryoung, Inorg. Chem. 30 (1991) 1149.Google Scholar
  314. 314.
    K. N. Marsh and E. Juhasz, Pure Appl. Chem. 53 (1981) 1841.Google Scholar
  315. 315.
    J. Braunstein and G. D. Robbins, J. Chem. Ed. 48 (1971) 52.Google Scholar
  316. 316.
    H. Every, A. G. Bishop, M. Forsyth, and D. R. MacFarlane, Electrochim. Acta 45 (2000) 1279; H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 108 (2004) 16593.Google Scholar
  317. 317.
    K. Hayamizu, Y. Aihara, H. Nakagawa, T. Nukuda, and W. S. Price, J. Phys. Chem. B 108 (2004) 19527; H. Tokuda, K. Ishii, M. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 110 (2006) 2833.Google Scholar
  318. 318.
    P. C. Trulove and R. A. Mantz, “Electrochemical Properties of Ionic Liquids,” in: Ionic Liquids in Synthesis, p. 103, P. Wasserscheid and T. Welton, eds., Wiley- VCH, Weinheim, 2003.Google Scholar
  319. 319.
    S.-Y. Lee, H. H. Yong, Y. J. Lee, S. K. Kim, and S. Ahn, J. Phys. Chem. B 109 (2005) 13663.Google Scholar
  320. 320.
    M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, and J. A. Widegren, Nature 439 (2006) 831.Google Scholar
  321. 321.
    Electrochemical Methods: Fundamentals and Applications, A. J. Bard and L. R. Faulkner, John Wiley & Sons, New York, 2001.Google Scholar
  322. 322.
    M. Johnston, J.-J. Lee, G. S. Chottiner, B. Miller, T. Tsuda, C. L. Hussey, and D. A. Scherson, J. Phys. Chem. B 109 (2005) 11296.Google Scholar
  323. 323.
    G. A. Snook, A. S. Best, A. G. Pandolfo, and A. F. Hollenkamp, Electrochem. Commun. 8 (2006) 1405.Google Scholar
  324. 324.
    G. Gritzner and J. Kůta, Pure Appl. Chem. 56 (1984) 461.Google Scholar
  325. 325.
    Z. J. Karpinski, C. Nanjundiah, and R. A. Osteryoung, Inorg. Chem. 23 (1984) 3358 ; A. I. Bhatt, A. M. Bond, D. R. MacFarlane, J. Zhang, J. L. Scott, C. R. Strauss, P. I. Iotov, and S. V. Kalcheva, Green Chem. 8 (2006) 161.Google Scholar
  326. 326.
    T. Tsuda, C. L. Hussey, T. Nohira, and R. Hagiwara, unpublished data (2006).Google Scholar
  327. 327.
    “Potentiometry in Non-Aqueous Solutions,” in: Electrochemistry in Nonaqueous Solutions, p. 167, K. Izutsu, Wiley-VCH, Weinheim, 2002.Google Scholar
  328. 328.
    K. Murase, K. Nitta, T. Hirato, and Y. Awakura, J. Appl. Electrochem. 31 (2001)1089.Google Scholar
  329. 329.
    H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, and Y. Miyazaki, Chem. Lett. (2000) 922.Google Scholar
  330. 330.
    H. Matsumoto, H. Sakaebe, and K. Tatsumi, J. Power Sources 146 (2005) 45.Google Scholar
  331. 331.
    A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams, J. Phys. Chem. 88 (1984) 2614.Google Scholar
  332. 332.
    S. Carda-Broch, A. Berthod, and D. W. Armstrong, Anal. Bioanal. Chem. 375 (2003) 191.Google Scholar
  333. 333.
    H. Matsumoto, T. Matsuda, and Y. Miyazaki, Chem Lett. (2000) 1430.Google Scholar
  334. 334.
    T. Goto and Y. Ito, J. Electrochem. Soc. 144 (1997) 2271; T. Goto and Y. Ito, Electrochim. Acta 43 (1998) 3379.Google Scholar
  335. 335.
    R. Bilewicz, K. Wikiel, R. Osteryoung, and J. Osteryoung, Anal. Chem. 61 (1989) 965.Google Scholar
  336. 336.
    R. S. Nicholson and I. Shain, Anal. Chem. 36 (1964) 706.Google Scholar
  337. 337.
    R. S. Nicholson, Anal. Chem. 38 (1966) 1406.Google Scholar
  338. 338.
    Q. Zhu and C. L. Hussey, J. Electrochem. Soc. 148 (2001) C395; B. J. Tierney, W. R. Pitner, J. A. Mitchell, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc. 145 (1998) 3110; J. A. Mitchell, W. R. Pitner, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc. 143 (1996) 3448.Google Scholar
  339. 339.
    P. C. Andricacos, J. Tabib, and L. T. Romankiw, J. Electrochem. Soc. 135 (1988) 1172 ; K. H. Wong and P. C. Andricacos, J. Electrochem. Soc. 137 (1990) 1087; J. Horkans, I-C. H. Chang, P. C. Andricacos, and E. J. Podlaha, J. Electrochem. Soc. 138 (1991) 411.Google Scholar
  340. 340.
    F. G. Cottrell, Z. Phys. Chem. 42 (1903) 385.Google Scholar
  341. 341.
    P.-Y. Chen and I-W. Sun, Electrochim. Acta 45 (2000) 3163.Google Scholar
  342. 342.
    J.-F. Huang and I-W. Sun, J. Electrochem. Soc. 149 (2002) E348.Google Scholar
  343. 343.
    Techniques for Characterization of Electrodes and Electrochemical Processes, R. Varma and J. R. Selman, eds., Wiley, New York, 1991.Google Scholar
  344. 344.
    B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.Google Scholar
  345. 345.
    J.-J. Lee, B. Miller, X. Shi, R. Kalish, and K. A. Wheeler, J. Electrochem. Soc. 147 (2000) 3370.Google Scholar
  346. 346.
    C. L. Hussey and X. Xu, J. Electrochem. Soc. 138 (1991) 1886.Google Scholar
  347. 347.
    X.-H. Xu and C. L. Hussey, J. Electrochem. Soc. 139 (1992) 1295.Google Scholar
  348. 348.
    X.-H. Xu and C. L. Hussey, J. Electrochem. Soc. 139 (1992) 3103.Google Scholar
  349. 349.
    W. R. Pitner and C. L. Hussey, J. Electrochem. Soc. 144 (1997) 3095.Google Scholar
  350. 350.
    J.-J. Lee, B. Miller, X. Shi, R. Kalish, and K. A. Wheeler, J. Electrochem. Soc. 148 (2001) C183.Google Scholar
  351. 351.
    X.-H. Xu and C. L. Hussey, J. Electrochem. Soc. 140 (1993) 618.Google Scholar
  352. 352.
    X.-H. Xu and C. L. Hussey, J. Electrochem. Soc. 140 (1993) 1226.Google Scholar
  353. 353.
    W. R. Pitner, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc. 143 (1996) 130.Google Scholar
  354. 354.
    T. Tsuda, L. Boyd, and C. L. Hussey, unpublished data (2006).Google Scholar
  355. 355.
    P.-Y. Chen and C. L. Hussey, Electrochim. Acta 52 (2007) 1857.Google Scholar
  356. 356.
    B. R. Scharifker and J. Mostany, J. Electroanal. Chem. 177 (1984) 13.Google Scholar
  357. 357.
    V. Tsakova and A. Milchev, J. Electroanal. Chem. 235 (1987) 237.Google Scholar
  358. 358.
    Electrocrystallization: Fundamentals of Nucleation and Growth, A. Milchev, Kluwer Academic Publishers, Boston, Massachusetts, 2002.Google Scholar
  359. 359.
    T. Tsuda, C. L. Hussey, and G. R. Stafford, ECS Transactions 3(35) (2007) 217.Google Scholar
  360. 360.
    J. Fuller, R. T. Carlin, and R. A. Osteryoung, J. Electrochem. Soc. 144 (1997) 3881.Google Scholar
  361. 361.
    K. Kubo, N. Hirai, T. Tanaka, and S. Hara, Surf. Sci. 565 (2004) L271.Google Scholar
  362. 362.
    D. L. Boxall and R. A. Osteryoung, J. Electrochem. Soc. 149 (2002) E185.Google Scholar
  363. 363.
    S. I. Nikitenko, C. Cannes, C. Le Naour, P. Moisy, and D. Trubert, Inorg. Chem. 44 (2005) 9497.Google Scholar
  364. 364.
    S. I. Nikitenko and P. Moisy, Inorg. Chem. 45 (2006) 1235.Google Scholar
  365. 365.
    S. Z. E. Abedin, N. Borissenko, and F. Endres, Electrochem. Commun. 6 (2004) 422.Google Scholar
  366. 366.
    M. Matsumiya, M. Terazono, and K. Tokuraku, Electrochim. Acta 51 (2006) 1178.Google Scholar
  367. 367.
    M. Yamagata, N. Tachikawa, Y. Katayama, and T. Miura, Electrochim. Acta 52 (2007) 3317.Google Scholar
  368. 368.
    P.-Y. Chen and C. L. Hussey, Electrochim. Acta 50 (2005) 2533.Google Scholar
  369. 369.
    M. Matsunaga, T. Matsuo, and M. Morimitsu, in: Proceedings of the Twelfth International Symposium on Molten Salts, p. 931, P. C. Trulove, H. C. De Long, R. A. Mantz, G. R. Stafford, and M. Matsunaga, eds., PV2002-19, The Electrochemical Society, Inc., Pennington, NJ, 2002.Google Scholar
  370. 370.
    J. Zhang, A. M. Bond, D. R. MacFarlane, S. A. Forsyth, J. M. Pringle, A. W. A. Mariotti, A. F. Glowinski, and A. G. Wedd, Inorg. Chem. 44 (2005) 5123.Google Scholar
  371. 371.
    M. Yamagata, N. Tachikawa, Y. Katayama, and T. Miura, Electrochemistry 73 (2005) 564.Google Scholar
  372. 372.
    B. M. Quinn, Z. Ding, R. Moulton, and A. J. Bard, Langmuir 18 (2002) 1734.Google Scholar
  373. 373.
    R. Fukui, Y. Katayama, and T. Miura, Electrochemistry 73 (2005) 567.Google Scholar
  374. 374.
    B. K. Sweeny and D. G. Peters, Electrochem. Commun. 3 (2001) 712.Google Scholar
  375. 375.
    S.-I Hsiu, C.-C. Tai, and I-W. Sun, Electrochim. Acta 51 (2006) 2607.Google Scholar
  376. 376.
    C.-C. Tai, F.-Y. Su, and I-W. Sun, Electrochim. Acta 50 (2005) 5504.Google Scholar
  377. 377.
    P.-Y. Chen and I-W. Sun, Electrochim. Acta 45 (1999) 441.Google Scholar
  378. 378.
    Y. Katayama, S. Dan, T. Miura, and T. Kishi, J. Electrochem. Soc. 148 (2001) C102.Google Scholar
  379. 379.
    Y. Katayama, T. Morita, M. Yamagata, and T. Miura, Electrochemistry 71 (2003) 1033.Google Scholar
  380. 380.
    F.-Y. Su, J.-F. Huang, and I-W. Sun, J. Electrochem. Soc. 151 (2004) C811.Google Scholar
  381. 381.
    M-H. Yang and I-W. Sun, J. Appl. Electrochem. 33 (2003) 1077.Google Scholar
  382. 382.
    Y. Zhang and J. B. Zheng, Electrochim. Acta 52 (2007) 4082.Google Scholar
  383. 383.
    M. Yamagata, Y. Katayama, and T. Miura, J. Electrochem. Soc. 153 (2006) E5.Google Scholar
  384. 384.
    R. Nagaishi, M. Arisaka, T. Kimura, and Y. Kitatsuji, J. Alloys Compd. 431 (2007) 221.Google Scholar
  385. 385.
    A. I. Bhatt, N. W. Duffy, D. Collison, I. May, and R. G. Lewin, Inorg. Chem. 45 (2006) 1677.Google Scholar
  386. 386.
    P. Giridhar, K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, Electrochim. Acta 52 (2007) 3006.Google Scholar
  387. 387.
    C. A. Brooks and A. P. Doherty, J. Phys. Chem. B 109 (2005) 6276.Google Scholar
  388. 388.
    P. Liu, Y.-P. Du, Q.-Q. Yang, G.-R. Li, and Y.-X. Tong, Electrochim. Acta 52 (2006) 710.Google Scholar
  389. 389.
    F. H. Hurley and T. P. Wier, Jr., J. Electrochem. Soc. 98 (1951) 203.Google Scholar
  390. 390.
    F. H. Hurley, US Patent US 2,446,331 (1948); F. H. Hurley and T. P. Wier, Jr., US Patent US 2,446,349 (1948).Google Scholar
  391. 391.
    H. Zheng, K. Jiang, T. Abe, and Z. Ogumi, Carbon 44 (2006) 203.Google Scholar
  392. 392.
    M. Egashira, S. Okada, J. Yamaki, D. A. Dri, F. Bonadies, and B. Scrosati, J. Power Sources 138 (2004) 240.Google Scholar
  393. 393.
    M. Egashira, M. Nakagawa, I. Watanabe, S. Okada, and J. Yamaki, J. Power Sources 146 (2005) 685.Google Scholar
  394. 394.
    P. C. Howlett, D. R. MacFarlane, and A. F. Hollenkamp, Electrochem. Solid- State Lett. 7 (2004) A97.Google Scholar
  395. 395.
    N. Byrne, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, Adv. Mater. 17 (2005) 2497.Google Scholar
  396. 396.
    L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen, and H. X. Yang, Electrochem. Commun. 8 (2006) 610.Google Scholar
  397. 397.
    J. Xu, J. Yang, Y. NuLi, J. Wang, and Z. Zhang, J. Power Sources 160 (2006) 621.Google Scholar
  398. 398.
    V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, and D. Aurbach, Electrochem. Commun. 9 (2007) 796.Google Scholar
  399. 399.
    Y. NuLi, J. Yang, and R. Wu, Electrochem. Commun. 7 (2005) 1105.Google Scholar
  400. 400.
    Y. NuLi, J. Yang, J. Wang, J. Xu, and P. Wang, Electrochem. Solid-State Lett. 8 (2005) C166.Google Scholar
  401. 401.
    I. Mukhopadhyay, C. L. Aravinda, D. Borissov, and W. Freyland, Electrochim. Acta 50 (2005) 1275.Google Scholar
  402. 402.
    S. Z. E. Abedin, H. K. Farag, E. M. Moustafa, U. W.-Biermann, and F. Endres, Phys. Chem. Chem. Phys. 7 (2005) 2333.Google Scholar
  403. 403.
    J.-F. Huang and I-W. Sun, J. Electrochem. Soc. 151 (2004) C8.Google Scholar
  404. 404.
    N. Koura, N. Mitsuta, T. Endoh, and S. Itoh, J. Surf. Fin. Soc. Jpn. 46 (1995) 752 (in Japanese).Google Scholar
  405. 405.
    N. Koura, T. Endo, and Y. Idemoto, J. Non-Cryst. Solids 205-207 (1996) 650.Google Scholar
  406. 406.
    N. Koura, S. Matsumoto, and Y. Idemoto, J. Surf. Fin. Soc. Jpn. 49 (1998) 1215 (in Japanese).Google Scholar
  407. 407.
    P.-Y. Chen and I-W. Sun, Electrochim. Acta 46 (2001) 1169.Google Scholar
  408. 408.
    J.-K. Chang, W.-T. Tsai, P.-Y. Chen, C.-H. Huang, F.-H. Yeh, and I-W. Sun, Electrochem. Solid-State Lett. 10 (2007) A9.Google Scholar
  409. 409.
    N. Koura, M. Iwai, K. Ueda, and A. Suzuki, J. Surf. Fin. Soc. Jpn. 44 (1993) 439 (in Japanese).Google Scholar
  410. 410.
    P.-Y. Chen, M.-C. Lin, and I-W. Sun, J. Electrochem. Soc. 147 (2000) 3350.Google Scholar
  411. 411.
    S. Z. E. Abedin, A. Y. Saad, H. K. Farag, N. Borisenko, Q. X. Liu, and F. Endres, Electrochim. Acta 52 (2007) 2746.Google Scholar
  412. 412.
    L. Aldous, D. S. Silvester, C. Villagrán, W. R. Pitner, R. G. Compton, M. C. Lagunas, and C. Hardacre, New J. Chem. 30 (2006) 1576.Google Scholar
  413. 413.
    A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Trans. IMF 79 (2001) 204.Google Scholar
  414. 414.
    Y.-F. Lin and I-W. Sun, Electrochim. Acta 44 (1999) 2771.Google Scholar
  415. 415.
    S.-I Hsiu, J.-F. Huang, I-W. Sun, C.-H. Yuan, and J. Shiea, Electrochim. Acta 47 (2002) 4367.Google Scholar
  416. 416.
    J.-F. Huang and I-W. Sun, Chem. Mater. 16 (2004) 1829.Google Scholar
  417. 417.
    F.-H. Yeh, C.-C. Tai, J.-F. Huang, and I-W. Sun, J. Phys. Chem. B 110 (2006) 5215.Google Scholar
  418. 418.
    Y.-W. Lin, C.-C. Tai, and I-W. Sun, J. Electrochem. Soc. 154 (2007) D316.Google Scholar
  419. 419.
    T. Iwagishi, H. Yamamoto, K. Koyama, H. Shirai, and H. Kobayashi, Electrochemistry 70 (2002) 671 (in Japanese).Google Scholar
  420. 420.
    K. Koyama, T. Iwagishi, H. Yamamoto, H. Shirai, and H. Kobayashi, Electrochemistry 70 (2002) 178.Google Scholar
  421. 421.
    J.-G. Wang, J. Tang, Y.-C. Fu, Y.-M. Wei, Z.-B. Chen, and B.-W. Mao, Electrochem. Commun. 9 (2007) 633.Google Scholar
  422. 422.
    H. Yamamoto, H. Kinoshita, M. Kimura, H. Shirai, and K. Koyama, Electrochemistry 74 (2006) 370 (in Japanese).Google Scholar
  423. 423.
    S. Z. E. Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, and F. Endres, Electrochem. Commun. 7 (2005) 1111.Google Scholar
  424. 424.
    M.-H. Yang, M.-C. Yang, and I-W. Sun, J. Electrochem. Soc. 150 (2003) C544.Google Scholar
  425. 425.
    M. Morimitsu, Y. Nakahara, and M. Matsunaga, Electrochemistry 73 (2005) 754.Google Scholar
  426. 426.
    Y. Katayama, M. Yokomizo, T. Miura, and T. Kishi, Electrochemistry 69 (2001) 834.Google Scholar
  427. 427.
    S. Z. E. Abedin, N. Borissenko, and F. Endres, Electrochem. Commun. 6 (2004) 510.Google Scholar
  428. 428.
    N. Borissenko, S. Z. E. Abedin, and F. Endres, J. Phys. Chem. B 110 (2006) 6250.Google Scholar
  429. 429.
    F. Endres and C. Schrodt, Phys. Chem. Chem. Phys. 2 (2000) 5517.Google Scholar
  430. 430.
    F. Endres, Phys. Chem. Chem. Phys. 3 (2001) 3165.Google Scholar
  431. 431.
    F. Endres and S. Z. E. Abedin, Chem. Commun. (2002) 892.Google Scholar
  432. 432.
    F. Endres, Electrochem. Solid-State Lett. 5 (2002) C38.Google Scholar
  433. 433.
    F. Endres and S. Z. E. Abedin, Phys. Chem. Chem. Phys. 4 (2002) 1640.Google Scholar
  434. 434.
    F. Endres and S. Z. E. Abedin, Phys. Chem. Chem. Phys. 4 (2002) 1649.Google Scholar
  435. 435.
    W. Freyland, C. A. Zell, S. Z. E. Abedin, and F. Endres, Electrochim. Acta 48 (2003) 3053.Google Scholar
  436. 436.
    M. Morimitsu, Y. Nakahara, Y. Iwaki, and M. Matsunaga, J. Min. Met. 39B (2003) 59.Google Scholar
  437. 437.
    M.-C. Lin, P.-Y. Chen, and I-W. Sun, J. Electrochem. Soc. 148 (2001) C653.Google Scholar
  438. 438.
    D. D. Shivagan, P. J. Dale, A. P. Samantilleke, and L. M. Peter, Thin Solid Films 515 (2007) 5899.Google Scholar
  439. 439.
    P. J. Dale, A. P. Samantilleke, D. D. Shivagan, and L. M. Peter, Thin Solid Films 515 (2007) 5751.Google Scholar
  440. 440.
    T. Iwagishi, K. Sawada, H. Yamamoto, K. Koyama, and H. Shirai, Electrochemistry 71 (2003) 318 (in Japanese).Google Scholar
  441. 441.
    T. Iwagishi, Y. Nakatsuka, H. Yamamoto, K. Koyama, and H. Shirai, Electrochemistry 72 (2004) 618 (in Japanese).Google Scholar
  442. 442.
    N. Koura and T. Endo, J. Surf. Fin. Soc. Jpn. 46 (1995) 1191 (in Japanese).Google Scholar
  443. 443.
    N. Koura, T. Endo, and Y. Idemoto, J. Surf. Fin. Soc. Jpn. 49 (1998) 913 (in Japanese).Google Scholar
  444. 444.
    N. Koura, Y. Suzuki, Y. Idemoto, and F. Matsumoto, J. Surf. Fin. Soc. Jpn. 52 (2001) 116 (in Japanese).Google Scholar
  445. 445.
    N. Koura, Y. Suzuki, Y. Idemoto, T. Kato, and F. Matsumoto, Surf. Coat. Technol. 169-170 (2003) 120.Google Scholar
  446. 446.
    H.-Y. Hsu and C.-C. Yang, Z. Naturforsch. 58b (2003) 1055.Google Scholar
  447. 447.
    J.-F. Huang and I-W. Sun, Electrochim. Acta 49 (2004) 3251.Google Scholar
  448. 448.
    H.-Y. Hsu and C.-C. Yang, Z. Naturforsch. 58b (2003) 139.Google Scholar
  449. 449.
    T. Katase, R. Kurosaki, K. Murase, T. Hirato, and Y. Awakura, Electrochem. Solid-State Lett. 9 (2006) C69.Google Scholar
  450. 450.
    N. Koura, G. Ling, and H. Ito, J. Surf. Fin. Soc. Jpn. 46 (1995) 1162 (in Japanese).Google Scholar
  451. 451.
    G. Ling and N. Koura, J. Surf. Fin. Soc. Jpn. 48 (1997) 454 (in Japanese).Google Scholar
  452. 452.
    N. Koura, K. Shibano, F. Matsumoto, H. Matsuzawa, T. Katou, Y. Idemoto, and G. Ling, J. Surf. Fin. Soc. Jpn. 52 (2001) 645 (in Japanese).Google Scholar
  453. 453.
    N. Koura, N. Tanabe, S. Seiki, S. Takahashi, M.-L. Saboungi, L. A. Curtiss, and K. Suzuya, in: Proceedings of the Tenth International Symposium on Molten Salts, p. 492, R. T. Carlin, S. Deki, M. Matsunaga, D. S. Newman, J. R. Selman, and G. R. Stafford, eds., PV96-7, The Electrochemical Society, Inc., Pennington, NJ, 1996.Google Scholar
  454. 454.
    S. Takahashi, L. A. Curtiss, D. Gosztola, N. Koura, and M.-L. Saboungi, Inorg. Chem. 34 (1995) 2990.Google Scholar
  455. 455.
    Q. Zhu and C. L. Hussey, J. Electrochem. Soc. 149 (2002) C268.Google Scholar
  456. 456.
    F. H. Hurley and T. P. Wier, Jr., J. Electrochem. Soc. 98 (1951) 207.Google Scholar
  457. 457.
    Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc. 144 (1997) 936.Google Scholar
  458. 458.
    T. Tsuda, T. Nohira, and Y. Ito, Electrochim. Acta 47 (2002) 2817.Google Scholar
  459. 459.
    K. Ui, T. Yatsushiro, M. Futamura, Y. Idemoto, and N. Koura, J. Surf. Fin. Soc. Jpn. 55 (2004) 409.Google Scholar
  460. 460.
    F. A. Ludwig, R. A. Osteryoung, C. W. Townsend, and A. Kindler, US Patent US 5,208,112A (1993).Google Scholar
  461. 461.
    M. Yoshizawa, A. Narita, and H. Ohno, “Fuel Cell,” in: Electrochemical Aspects of Ionic Liquids, p. 199, H. Ohno, ed., Wiley-Interscience, New Jersey, 2005.Google Scholar
  462. 462.
    T. Tsuda, C. L. Hussey, T. Nohira, Y. Ikoma, K. Yamauchi, R. Hagiwara, and Y. Ito, Electrochemistry 73 (2005) 644.Google Scholar
  463. 463.
    T. Oi, N. Yamauchi, R. Hagiwara, T. Nohira, K. Matsumoto, Y. Tamba, and Y. Ito, World Patent, WO 2005/086, 266 A1 (2005).Google Scholar
  464. 464.
    R. Hagiwara, T. Nohira, K. Matsumoto, and Y. Tamba, Electrochem. Solid-State Lett. 8 (2005) A231.Google Scholar
  465. 465.
    P. G. Zambonin, E. Desimoni, F. Palmisano, and L. Sabbatini, “Hydrogen in Ionic Liquids: A Review,” in: Ionic Liquids, p. 249, D. Inman and D. G. Lovering, eds., Plenum Press, New York, 1981.Google Scholar
  466. 466.
    A. Noda, M. A. B. H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 107 (2003) 4024.Google Scholar
  467. 467.
    M. A. B. H. Susan, A. Noda, S. Mitsushima, and M. Watanabe, Chem. Commun. (2003) 938.Google Scholar
  468. 468.
    K. Kudo, S. Mitsushima, N. Kamiya, and K.-I. Ota, Electrochemistry 73 (2005) 272.Google Scholar
  469. 469.
    K. Kudo, S. Mitsushima, N. Kamiya, and K.-I. Ota, Electrochemistry 73 (2005) 668.Google Scholar
  470. 470.
    M. A. B. H. Susan, M. Yoo, H. Nakamoto, and M. Watanabe, Chem. Lett. (2003) 836.Google Scholar
  471. 471.
    M. Watanabe, S. Mitsushima, T. Takeoka, A. Noda, K. Kudo, and R. Sakamoto, Jpn Patent, JP 2003,123,791 (2003); M. Watanabe, A. Noda, T. Osawa, T. Kishi, and T. Matsuda, World Patent, WO 03/083,981 A1 (2003).Google Scholar
  472. 472.
    M. A. B. H. Susan, A. Noda, N. Ishibashi, and M. Watanabe, Proceedings of the Ninth International Conference on Solid State Ionics, p. 899, B. V. R. Chowdari, H.-L. Too, G. M. Choi, and J.-H. Lee, eds., World Scientific Publishing Co., Singapore, 2004.Google Scholar
  473. 473.
    C. A. Angell, W. Xu, J.-P. Belieres, and M. Yoshizawa, World Patent, WO 2004/114,445 A1 (2004).Google Scholar
  474. 474.
    R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J. Dupont, Electrochem. Commun. 5 (2003) 728.Google Scholar
  475. 475.
    S. S. Sekhon, B. S. Lalia, J.-S. Park, C.-S. Kim, and K. Yamada, J. Mater. Chem. 16 (2006) 2256.Google Scholar
  476. 476.
    S. S. Sekhon, P. Krishnan, B. Singh, K. Yamada, and C. S. Kim, Electrochim. Acta 52 (2006) 1639; A. Goto, Y. Kawagoe, Y. Katayama, and T. Miura, Electrochemistry 75 (2007) 231; H. Nakamoto, A. Noda, K. Hayamizu, S. Hayashi, H. Hamaguchi, and M. Watanabe, J. Phys. Chem. C 111 (2007) 1541.Google Scholar
  477. 477.
    T. Tsuda, T. Nohira, Y. Nakamori, K. Matsumoto, R. Hagiwara, and Y. Ito,Solid State Ionics 149 (2002) 295.Google Scholar
  478. 478.
    C. M. Lang, K. Kim, and P. A. Kohl, Electrochem. Solid-State Lett. 9 (2006) A545.Google Scholar
  479. 479.
    Lithium Batteries: Science and Technology, G.-A. Nazri and G. Pistoia, eds., Kluwer Academic Publishers, Norwell, Massachusetts, USA, 2004.Google Scholar
  480. 480.
    Lithium Battery Technology, H. V. Venkatasetty, ed., John Wiley and Sons, New York, 1984.Google Scholar
  481. 481.
    H. Sakaebe and H. Matsumoto, “Application of Ionic Liquids to Li Batteries,” in: Electrochemical Aspects of Ionic Liquids, p. 173, H. Ohno, ed., Wiley- Interscience, New Jersey, 2005.Google Scholar
  482. 482.
    K. Ui, K. Ishikawa, T. Furuta, Y. Idemoto, and N. Koura, Electrochemistry 73 (2005) 120.Google Scholar
  483. 483.
    K. Ui, T. Minami, K. Ishikawa, Y. Idemoto, and N. Koura, Electrochemistry 73 (2005) 279 (in Japanese).Google Scholar
  484. 484.
    K. Ui, T. Minami, K. Ishikawa, Y. Idemoto, and N. Koura, J. Power Sources 146 (2005) 698.Google Scholar
  485. 485.
    H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, and Y. Aihara, J. Electrochem. Soc. 150 (2003) A695.Google Scholar
  486. 486.
    H. Zheng, H. Zhang, Y. Fu, T. Abe, and Z. Ogumi, J. Phys. Chem. B 109 (2005) 13676.Google Scholar
  487. 487.
    J. Caja, T. D. J. Dunstan, D. M. Ryan, and V. Katovic, in: Proceedings of the Twelfth International Symposium on Molten Salts, p. 150, P. C. Trulove, H. C. De Long, G. R. Stafford, and S. Deki, eds., PV99-41, The Electrochemical Society, Inc., Pennington, NJ, 1999.Google Scholar
  488. 488.
    J. Caja, T. D. J. Dunstan, and V. Katovic, in: Proceedings of the Thirteenth International Symposium on Molten Salts, p. 1014, P. C. Trulove, H. C. De Long, R. A. Mantz, G. R. Stafford, and M. Matsunaga, eds., 2002-19, The Electrochemical Society, Inc., Pennington, NJ, 2002.Google Scholar
  489. 489.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, M. Watanabe, and N. Terada, Chem. Commun. (2006) 544.Google Scholar
  490. 490.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, A. Usami, N. Terada, and M. Watanabe, Electrochem. Solid-State 8 (2005) A577.Google Scholar
  491. 491.
    B. Garcia, S. Lavallée, G. Perron, C. Michot, and M. Armand, Electrochim. Acta 49 (2004) 4583.Google Scholar
  492. 492.
    J.-H. Shin, W. A. Henderson, G. B. Appetecchi, F. Alessandrini, and S. Passerini, Electrochim. Acta 50 (2005) 3859.Google Scholar
  493. 493.
    K. Hayashi, Y. Nemoto, K. Akuto, and Y. Sakurai, J. Power Sources 146 (2005) 689.Google Scholar
  494. 494.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B 110 (2006) 10228.Google Scholar
  495. 495.
    S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and N. Terada, J. Electrochem. Soc. 154 (2007) A173.Google Scholar
  496. 496.
    M. Egashira, M. T.-Nakagawa, I. Watanabe, S. Okada, and H. Yamaki, J. Power Sources 160 (2006) 1387.Google Scholar
  497. 497.
    J.-H. Shin, W. A. Henderson, C. Tizzani, S. Passerini, S.-S. Jeong, and K.-W. Kim, J. Electrochem. Soc. 153 (2006) A1649.Google Scholar
  498. 498.
    J.-H. Shin, W. A. Henderson, S. Scaccia, P. P. Prosini, and S. Passerini, J. Power Sources 156 (2006) 560.Google Scholar
  499. 499.
    M. Holzapfel, C. Jost, and P. Novák, Chem. Commun. (2004) 2098.Google Scholar
  500. 500.
    T. Sato, T. Maruo, S. Marukane, and K. Takagi, J. Power Sources 138 (2004) 253.Google Scholar
  501. 501.
    A. Chagnes, M. Diaw, B. Carré, P. Willmann, and D. Lemordant, J. Power Sources 145 (2005) 82.Google Scholar
  502. 502.
    M. Diaw, A. Chagnes, B. Carré, P. Willmann, and D. Lemordant, J. Power Sources 146 (2005) 682.Google Scholar
  503. 503.
    Y. Katayama, M. Yukumoto, and T. Miura, Electrochem. Solid-State Lett. 6 (2003) A96.Google Scholar
  504. 504.
    H. Zheng, B. Li, Y. Fu, T. Abe, and Z. Ogumi, Electrochim. Acta 52 (2006) 1556.Google Scholar
  505. 505.
    H. Sakaebe, H. Matsumoto, and K. Tatsumi, J. Power Sources 146 (2005) 693.Google Scholar
  506. 506.
    P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth, and D. R. MacFarlane, J. Electrochem. Soc. 153 (2006) A595.Google Scholar
  507. 507.
    F. F. C. Bazito, Y. Kawano, and R. M. Torresi, Electrochim. Acta 52 (2007) 6427.Google Scholar
  508. 508.
    Y. Wang, K. Zaghib, A. Guerfi, F. F. C. Bazito, R. M. Torresi, and J. R. Dahn, Electrochim. Acta 52 (2007) 6346.Google Scholar
  509. 509.
    T. E. Sutto, P. C. Trulove, and H. C. De Long, Electrochem. Solid-State Lett. 6 (2003) A50.Google Scholar
  510. 510.
    T. Kuboki, T. Okuyama, T. Ohsaki, and N. Takami, J. Power Sources 146 (2005) 766.Google Scholar
  511. 511.
    Y. Zhang and M. U.-Macdonald, J. Power Sources 144 (2005) 191.Google Scholar
  512. 512.
    D. Behar, C. Gonzalez, and P. Neta, J. Phys. Chem. A 105 (2001) 7607.Google Scholar
  513. 513.
    A. Marcinek, J. Zielonka, J. G bicki, C. M. Gordon, and I. R. Dunkin, J. Phys. Chem. A 105 (2001) 9305.Google Scholar
  514. 514.
    D. Allen, G. Baston, A. E. Bradley, T. Gorman, A. Haile, I. Hamblett, J. E. Hatter, M. J. F. Healey, B. Hodgson, R. Lewin, K. V. Lovell, B. Newton, W. R. Pitner, D. W. Rooney, D. Sanders, K. R. Seddon, H. E. Sims, and R. C. Thied, Green Chem. 4 (2002) 152.Google Scholar
  515. 515.
    D. Behar, P. Neta, and C. Schultheisz, J. Phys. Chem. A 106 (2002) 3139.Google Scholar
  516. 516.
    J. Grodkowski and P. Neta, J. Phys. Chem. A 106 (2002) 5468.Google Scholar
  517. 517.
    J. F. Wishart and P. Neta, J. Phys. Chem. B 107 (2003) 7261.Google Scholar
  518. 518.
    L. Berthon, S. I. Nikitenko, I. Bisel, C. Berthon, M. Faucon, B. Saucerotte, N. Zorz, and P. Moisy, Dalton Trans. (2006) 2526.Google Scholar
  519. 519.
    Nuclear Wastes: Technologies for Separations and Transmutation, N. C. Rasmussen, National Academy Press, Washington, 1996.Google Scholar
  520. 520.
    S. Dai, Y. H. Ju, and H. Luo, Proceedings of International George Papatheodorou Symposium, p. 254, Patras Science Park, Greece (1999).Google Scholar
  521. 521.
    S. Dai, Y. H. Ju, and C. E. Barnes, J. Chem. Soc., Dalton Trans. (1999) 1201.Google Scholar
  522. 522.
    S. Chun, S. V. Dzyuba, and R. A. Bartsch, Anal. Chem. 73 (2001) 3737.Google Scholar
  523. 523.
    M. L. Dietz and J. A. Dzielawa, Chem. Commun. (2001) 2124.Google Scholar
  524. 524.
    M. P. Jensen, J. A. Dzielawa, P. Rickert, and M. L. Dietz, J. Am. Chem. Soc. 124 (2002) 10664.Google Scholar
  525. 525.
    M. L. Dietz, J. A. Dzielawa, I. Laszak, B. A. Young, and M. P. Jensen, Green Chem. 5 (2003) 682.Google Scholar
  526. 526.
    H. Luo, S. Dai, and P. V. Bonnesen, Anal. Chem. 76 (2004) 2773.Google Scholar
  527. 527.
    H. Luo, S. Dai, P. V. Bonnesen, A. C. Buchanan, III, J. D. Holbrey, N. J. Bridges, and R. D. Rogers, Anal. Chem. 76 (2004) 3078.Google Scholar
  528. 528.
    D. C. Stepinski, M. P. Jensen, J. A. Dzielawa, and M. L. Dietz, Green Chem. 7 (2005) 151.Google Scholar
  529. 529.
    P. Vayssière, A. Chaumont, and G. Wipff, Phys. Chem. Chem. Phys. 7 (2005) 124.Google Scholar
  530. 530.
    H. Heitzman, B. A. Young, D. J. Rausch, P. Rickert, D. C. Stepinski, and M. L. Dietz, Talanta 69 (2006) 527.Google Scholar
  531. 531.
    H. Luo, M. Yu, and S. Dai, Z. Naturforsch. 62a (2007) 281.Google Scholar
  532. 532.
    P.-Y. Chen, Electrochim. Acta 52 (2007) 5484. 174 Tetsuya Tsuda and Charles L. Hussey Google Scholar
  533. 533.
    N. Sieffert and G. Wipff, J. Phys. Chem. B 110 (2006) 19497.Google Scholar
  534. 534.
    A. E. Visser and R. D. Rogers, J. Solid State Chem. 171 (2003) 109.Google Scholar
  535. 535.
    A. E. Visser, M. P. Jensen, I. Laszak, K. L. Nash, G. R. Choppin, and R. D. Rogers, Inorg. Chem. 42 (2003) 2197.Google Scholar
  536. 536.
    A. Chaumont and G. Wipff, Phys. Chem. Chem. Phys. 8 (2006) 494.Google Scholar
  537. 537.
    M.-O. Sornein, C. Cannes, C. Le Naour, G. Lagarde, E. Simoni, and J.-C. Berthet, Inorg. Chem. 45 (2006) 10419.Google Scholar
  538. 538.
    P. B. Hitchcock, T. J. Mohammed, K. R. Seddon, J. A. Zora, C. L. Hussey, and E. H. Ward, Inorg. Chim. Acta 113 (1986) L25.Google Scholar
  539. 539.
    A. E. Bradley, J. E. Hatter, M. Nieuwenhuyzen, W. R. Pitner, K. R. Seddon, and R. C. Thied, Inorg. Chem. 41 (2002) 1692.Google Scholar
  540. 540.
    M. Deetlefs, C. L. Hussey, T. J. Mohammed, K. R. Seddon, J.-A. van den Berg, and J. A. Zora, Dalton Trans. (2006) 2334.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Tetsuya Tsuda
    • 1
  • Charles L. Hussey
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of Mississippi, UniversityMississippi 38677-1848USA

Personalised recommendations