Advertisement

Dislocation-Mediated Time-Dependent Deformation in Crystalline Solids

  • Michael Mills
  • Glenn Daehn
Chapter

Abstract

The time-dependent plastic deformation of crystalline solids has been the subject of much academic and practical interest for at least 100years. Many studies have emphasized the phenomenological quantitative macroscopic relationships between stress, time, and strain rate, while other studies have focused on the dislocation structures and microstructures that develop while deforming over time under stress at elevated temperature. This review attempts to unify these two, largely separate schools of thought by using microstructural information to develop simple but broad quantitative mechanistic relationships that match the observed phenomenology. Dislocation processes that plastically deform crystals are modeled. Grain boundary sliding and related processes are not considered for simplicity and clarity. Two common classes of deformation are recognized. In mobility-controlled systems, dislocations move through the crystal under stress as controlled by their mobility. This may be the result of a frictional interaction with the lattice; interactions with mobile solute species or the diffusion-controlled motion of jog segments on screw dislocations. The other broad class is based on the interaction of dislocations with discrete obstacles. This is argued to control the deformation of a range of alloys spanning pure metals, many engineering alloys, to oxide dispersion strengthened metals. It is the stability of the obstacles against recovery and coarsening that is the key difference between these materials. The unifying theme in both materials classes is that dislocation-level mechanics is directly used to derive equations for creep.

Keywords

Creep Rate Pure Metal Stress Exponent Oxide Dispersion Strengthen Dislocation Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlquist, C. N., & Nix, W. D. (1969). Scripta Metallurgica, 3, 679.CrossRefGoogle Scholar
  2. Alexander, H., & Haasen, P. (1968). Solid State Physics, 22, 28.Google Scholar
  3. Argon, A., Hirth, J., & Saada, G. (1960). Acta Metallurgica, 8,841.CrossRefGoogle Scholar
  4. Argon, A. S. (2008). Strengthening Mechanism in Crystal Plasticity. New York: Oxford UniversityPress.Google Scholar
  5. Ashby, M. F. (1966). Work hardening of dispersion-hardened crystals. Philosophical Magazine, 14(132),1157.CrossRefGoogle Scholar
  6. Atkinson, H. V. (1988). Acta Metallurgica, 36, 469–491.CrossRefGoogle Scholar
  7. Baird, J., & Gale, B. (1965). Philosophical Transactions of the Royal Society, 257,68.Google Scholar
  8. Baker, I. (2009). Deformation mechanism maps. http://engineering.dartmouth.edu/defmech/
  9. Bao, G., Hutchinson, J. W., & McMeeking, R. M. (1991). Acta Metallurgica, 39, 1871–1882.CrossRefGoogle Scholar
  10. Barrett, C., & Nix, W. (1965). Acta Materialia, 13,1247.CrossRefGoogle Scholar
  11. Barrett, C. R., & Sherby, O. D. (1965). Influence of stacking-fault energy on high-temperature creep of pure metals. Transactions of the Metallurgical Society of Aime, 233(6),1116.Google Scholar
  12. Barnett, D. M., Wong, G., & Nix, W. D. (1974). Acta Materialia, 22,2035.Google Scholar
  13. Biberger, M., & Gibeling, J. C. (1995). Analysis of creep transients in pure metals following stress changes. Acta Metallurgica Et Materialia, 43(9), 3247–3260.CrossRefGoogle Scholar
  14. Bodur, C. T., Chiang J., Argon, A.S. (2005). Journal of the European Ceramic Society, 25,1431.CrossRefGoogle Scholar
  15. Bray, A. J. (1994). Theory of phase-ordering kinetics. Advances in Physics, 43(3), 357–459.MathSciNetCrossRefGoogle Scholar
  16. Brehm, H., & Daehn, G. S. (2002). A framework for Modeling creep in pure metals. Metallurgical and Materials Transactions A– Physical Metallurgy and Materials Science, 33(2), 363–371.Google Scholar
  17. Burke, J. E., & Turnbull, D. (1952). Progress in Metal Physics (Vol. 3). London: PergamonPress.Google Scholar
  18. Cadek, J., Oikawa, H., & Sustek, V. (1995). Threshold creep-behavior of discontinusous aluminum and aluminum-alloy matrix composites - an overview. Materials Science and Engineering A– Structural Materials Properties Microstructure and Processing, 190(1–2),9–23.Google Scholar
  19. Caillard, D., & Martin, J. L. (2005). Dislocation motion controlled by interactions with crystal lattice: modelling and experiments. International Materials Reviews, 50(6), 366–384.CrossRefGoogle Scholar
  20. Chakrabarti, A., Toral, R., & Gunton, J. D. (1993). Late-stage coarsening for off-critical quenches: scaling functions and the growth law. Physical Review E, 47(5), 3025–3038.CrossRefGoogle Scholar
  21. Chang, J., Bodur, C. T., & Argon, A. S. (2003). Pyramidal edge dislocation cores in sapphire. Philosophical Magazine Letters, 83(11), 659–666.CrossRefGoogle Scholar
  22. Chen, Y.-C. (1991). Elevated temperature deformation and forming of aluminum-matrix composites, Ph.D. Dissertation, The Ohio State University.Google Scholar
  23. Chen, W., & Chaturvedi, C. (1994). The effect of grain boundary precipitates on the creep behavior of Inconel 718. Materials Science and Engineering, A183,81–89.Google Scholar
  24. Coble, R. L. (1963). Journal of Applied Physics, 34, 1679.CrossRefGoogle Scholar
  25. Daehn, G. S. (2001). Modeling thermally activated deformation with a variety of obstacles, and its application to creep transients. Acta Materialia, 49(11), 2017–2026.CrossRefGoogle Scholar
  26. Daehn, G. S., Brehm, H., Lee, H., & Lim, B. S. (2004). A model for creep based on microstructural length scale evolution. Materials Science and Engineering A– Structural Materials Properties Microstructure and Processing, 387–89, 576–584.Google Scholar
  27. Dorn, J. E. (1975). Paper presented at the Rate Processes in Plastic Deformation, Cleveland,OH.Google Scholar
  28. Dorn, J. E., & Rajnak, S. (1964). Nucleation of kink pairs and the peierls mechanism of plastic deformation. Transactions of the Metallurgical Society of AIME, 230,1052.Google Scholar
  29. Durian, D. J., Weitz, D. A., & Pine, D. J. (1991). Scaling behavior in shaving cream. Physical Review A, 44(12), R7902–R7905.CrossRefGoogle Scholar
  30. Edelin, G., & Poirier, J. P. (1973). Study of dislocation climb by means of diffusional creep experiments in magnesium. 1. Deformation mechanism. Philosophical Magazine, 28,1203.Google Scholar
  31. Epishin, A., & Link, T. (2004). Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philosophical Magazine, 84(19), 1979–2000.CrossRefGoogle Scholar
  32. Firestone, R. F., & Heuer, A. H. (1976). Creep deformation of 0 degree sapphire. Journal of the American Ceramic Society, 59,24–29.CrossRefGoogle Scholar
  33. Follansbee, P. S., & Kocks, U. F. (1988). A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica, 36(1),81–93.CrossRefGoogle Scholar
  34. Fradkov, V. E., & Udler, D. (1994). Two-dimensional normal grain growth: topological aspects. Advances in Physics, 43(6), 739–789.CrossRefGoogle Scholar
  35. Frost, H. J., & Ashby, A. F. (1982). Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics: London: PergamonPress.Google Scholar
  36. Furubayashi, E. (1969). Journal of the Physical Society of Japan, 27,130.CrossRefGoogle Scholar
  37. Garret-Reed, A., & Taylor, G. (1979). Philosophical Magazine, 39,597.CrossRefGoogle Scholar
  38. Gibeling, J. C., & Nix, W. D. (1981). Observations of anelastic backflow following stress reductions during creep of pure metals. Acta Metallurgica, 29(10), 1769–1784.CrossRefGoogle Scholar
  39. Gilman, J. J. (1969). Micromechanics of Flow in Solids. New York: McGrawHill.Google Scholar
  40. Groves, G. W., & Kelly, A. (1969). Change of shape due to dislocation climb. Philosophical Magazine, 19,977.CrossRefGoogle Scholar
  41. Han, Y., & Chaturvedi, C. (1987a). A study of back stress during creep deformation of a superalloy inconel 718. Materials Science and Engineering, 85,59–65.CrossRefGoogle Scholar
  42. Han, Y., & Chaturvedi, C. (1987b). Steady state creep deformation of superalloy inconel 718. Materials Science and Engineering, 89,25–33.CrossRefGoogle Scholar
  43. Harper, J. D., Dorn J. E. (1957). Acta Materialia, 5, 654.CrossRefGoogle Scholar
  44. Hasegawa, T., Ikeuchi, Y., & Karashima, S. (1972). Metal Science Journal, 6,72.Google Scholar
  45. Hayes, R. W., Viswanathan, G. B., & Mills, M. J. (2002). Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure. Acta Materialia, 50(20), 4953–4963.Google Scholar
  46. Hirth, J. P., & Lothe, J. (1968). Theory of Dislocations. New York: Mc GrawHill.Google Scholar
  47. Honeycombe, R. W. K. (1968). The Plastic Deformation of Solids. London: ArnoldPress.Google Scholar
  48. Horiuchi, R., Yoshinaga, H., & Hama, S. (1965). Transactions of the Japan Institute of Metals, 6,123.Google Scholar
  49. Huang, Y., & Humphreys, F. J. (2000). Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}{001}. Acta Materialia, 48(8), 2017–2030.CrossRefGoogle Scholar
  50. Ikeno, S., & Furubayashi, E. (1972). Physica Status Solidi A, 12,611.CrossRefGoogle Scholar
  51. Ikeno, S., & Furubayashi, E. (1975). Physica Status Solidi A, 27,581.CrossRefGoogle Scholar
  52. Imai, M., & Sumino, K. (1983). Philosophical Magazine, A47, 599.Google Scholar
  53. Jones, B. L., & Sellars, C. M. (1970). Metal Sciience Journal, 4,96.Google Scholar
  54. Karthikeyan, S., Viswanathan, G. B., Vasudevan, V. K., Kim, Y. W., & Mills, M. J. (2001). Mechanisms and Effect of Microstructure on Creep of TiAl-Based Alloys. Paper presented at the Strucural Intermetallics2001.Google Scholar
  55. Karthikeyan, S., Viswanathan, G. B., & Mills, M. J. (2004). Evaluation of the jogged-screw model of creep in equiaxed gamma-TiAl: identification of the key substructural parameters. Acta Materialia, 52(9), 2577–2589.CrossRefGoogle Scholar
  56. Karthikeyan, S., Unocic, R. R., Sarosi, P. M., Viswanathan, G. B., & Mills, M. J. (2006). Modeling microtwinning during creep in Ni-based superalloys. Scripta Materialia, 54(6), 1157–1162.CrossRefGoogle Scholar
  57. Kassner, M. E. (1990). A case for Taylor Hardening during primary and steady-state creep in aluminum and type-304 stainless-steel. Journal of Materials Science, 25(4), 1997–2003.CrossRefGoogle Scholar
  58. Kassner, M. E., & Perez-Prado, M. T. (2004). Fundamentals of Creep in Metals and Alloys. Oxford: Elsevier Publications.Google Scholar
  59. Kocks, U. F. (1976). Laws for work-hardening and low-temperature creep. Journal of Engineering Materials and Technology-Transactions of the ASME, 98(1),76–85.CrossRefGoogle Scholar
  60. Kocks, U. F., Argon, A. S., & Ashby, M. F. (1975). Thermodynamics and kinetics of slip. Progress in Materials Science, 19,1–281.CrossRefGoogle Scholar
  61. Kolbe M. (2001). The high temperature decrease of the critical resolved shear stress in nickel-based superalloys. Material Science and Engineering, 383, 319–321.Google Scholar
  62. Kovarik, L., Unocic, R. R., Li, J., Sarosi, P., Shen, C., Wang Y., & Mills, M. J. (2009). Microtwinning and other shearing mechanisms in Ni base superalloys at intermediate temperatures. Progress in Materials Science, 54, 839–873.CrossRefGoogle Scholar
  63. Krill, C. E., & Chen, L. Q. (2002). Computer simulation of 3-D grain growth using a phase-field model. Acta Materialia, 50(12), 3057–3073.Google Scholar
  64. Laks, I. H., Wiseman, C., Sherby, O. D., & Dom, J. E. (1957). Journal of Applied Mechanics, 24,207.Google Scholar
  65. Legrand, B. (1985). Core structure of the screw dislocations 1/3[1120] in titanium. Philosophical Magazine A– Physics of Condensed Matter Structure Defects and Mechanical Properties, 52(1),83–97.Google Scholar
  66. Legros M., Clement N., Caron P., & Coujou A. (2002). In-site observation of deformation micromechanisms in a rafted γ∕γ superalloy at 850C. Materials Science and Engineering A 337, 160–169.CrossRefGoogle Scholar
  67. Li, Y., & Mohamed, F. A. (1997). An investigation of creep behavior in an SiC-2124 Al composite. Acta Materialia, 45(11), 4775–4785.CrossRefGoogle Scholar
  68. Low, J., & Turkalo, A. (1962). Acta Materialia, 10, 215.CrossRefGoogle Scholar
  69. Luhban, J. D., & Felgar, R. P. (1961). Plasticity and Creep of Metals. New York:Wiley.Google Scholar
  70. Masing, G., & Raffelsieper, J. (1949). Mechanische Erholung von Aluminium-Einkristallen, Zeitschrift für Metallkunde, Band 41, Heft 3.Google Scholar
  71. McKamey, C. G., Carmichael, C. A., Cao, W. D., & Kennedy, R. L. (1998). Creep properties of phosphorous+boron modified alloy 718. Scripta Materialia, 38, 485–491.CrossRefGoogle Scholar
  72. Mecking, H., & Kocks, U. F. (1981). Kinetics of flow and strain-hardening. Acta Metallurgica, 29(11), 1865–1875.CrossRefGoogle Scholar
  73. Mills, M. J. (1985), A new theoretical interpretation of the high temperature deformation of solid solution alloys based on the steady state and transient creep properties of Al-5.5 at% Mg. Ph.D. Dissertation, Stanford University.Google Scholar
  74. Mills, M. J., Gibeling, J. C., & Nix, W. D. (1985). A dislocation loop model for creep of solid-solutions based on the steady-state and transient creep-properties of A1–5.5 at percent-Mg. Acta Metallurgica, 33(8), 1503–1514.Google Scholar
  75. Mills, M. J., Gibeling, J. C., & Nix, W. D. (1986). Measurement of anelastic creep strains in A1–5.5 at percent Mg using a new technique– implications for the mechanism of class-I creep. Acta Metallurgica, 34(5), 915–925.Google Scholar
  76. Mills, M. J., & Miracle, D. B. (1993). The structure of A(100) and A(110) dislocation cores in NiAl. Acta Metallurgica Et Materialia, 41(1),85–95.CrossRefGoogle Scholar
  77. Milicka, K., Cadek, J., & Rys, P. (1970). Acta Metallurgica, 18, 733–746.CrossRefGoogle Scholar
  78. Mohamed, F. A., Park, K. T., & Lavernia, E. J. (1992). Creep behavior of discontinuous SiC-Al composites. Materials Science and Engineering A– Structural Materials Properties Microstructure and Processing, 150(1),21–35.Google Scholar
  79. Moon, J. H., Cantonwine, P. E., Anderson, K. R., Karthikeyan, S., & Mills, M. J. (2006). Characterization and modeling of creep mechanisms in Zircaloy-4. Journal of Nuclear Materials, 353(3), 177–189.CrossRefGoogle Scholar
  80. Moon, J. H., Karthikeyan, S., Morrow, B. M., Fox, S. P., & Mills, M. J. (2009). High-temperature creep behavior and microstructure analysis of binary Ti-6Al alloys with trace amounts of Ni. Materials Science and Engineering A 510–511,35–41.CrossRefGoogle Scholar
  81. Mott, N. F. (1956). Creep and fracture of metals at high temperatures. Paper presented at the Proc. NPL Symp, London.Google Scholar
  82. Moulin, A., Condat, M., & Kubin, L. P. (1997). Simulation of Frank-Read sources in silicon. Acta Materialia, 45(6), 2339–2348.CrossRefGoogle Scholar
  83. Nabarro, F. R. N. (1948). Rept. Conf. Strength of Solids, Univ. Bristol.Google Scholar
  84. Nabarro, F. R. N. (1967). Steady state diffusional creep. Philosophical Magazine, 16,231.CrossRefGoogle Scholar
  85. Nabarro, F. R. N. (2004). Do we have an acceptable model of power-law creep? Materials Science and Engineering A 387–389, 659–664.CrossRefGoogle Scholar
  86. Nabarro, F. R. N. (2006). Creep in commercially pure metals. Acta Materialia, 54(2), 263–295.CrossRefGoogle Scholar
  87. Naka, S., Lasalmonie, A., Costa, P., & Kubin, L. P. (1988). The low-temperature plastic-deformation of alpha-titanium and the core structure of A-type screw dislocations. Philosophical Magazine A– Physics of Condensed Matter Structure Defects and Mechanical Properties, 57(5), 717–740.Google Scholar
  88. Nakayama, G. S., & Gibeling, J. C. (1990). Creep of copper under constant structure conditions. Scripta Metallurgica Et Materialia, 24(11), 2031–2035.CrossRefGoogle Scholar
  89. Nardone, V.C., & Strife, J.R. (1987). Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al (T4). Metallurgical Transactions A, 18A, 109–114.CrossRefGoogle Scholar
  90. Neeraj, T., Savage, M. F., Tatalovich, J., Kovarik, L., Hayes, R. W., & Mills, M. J. (2005). Observation of tension-compression asymmetry in alpha and alpha/beta titanium alloys. Philosophical Magazine, 85, 279–295.CrossRefGoogle Scholar
  91. Nieh, T.G., Xia, K., & Longdon, T.G. (1989). Scripta Metallurgica, 23, 851–854.CrossRefGoogle Scholar
  92. Nix, W. D., Gibeling, J. C., & Hughes, D. A. (1985). Time-dependent deformation of metals. Metallurgical Transactions A– Physical Metallurgy and Materials Science, 16(12), 2215–2226.Google Scholar
  93. Northwood, D. O., & Smith, I. O. (1984). Instantaneous strain and creep transients in an Al-7.72 at percent-Mg alloy. Materials Science and Engineering, 66(2), 205–212.Google Scholar
  94. Oden, A., Lind, E., & Lagneborg, R. (1972). Creep Strength in Steel and High-temperature Alloys. Sheffield. American Society for Metals, Cleveland OH.Google Scholar
  95. Park, K. T., & Mohamed, F. A. (1995). Creep strengthening in a discontinuous SiC-Al composite. Metallurgical Transactions A, 26(12), 3119–3129.Google Scholar
  96. Park, K. T., Lavernia, E. J., & Mohamed, F. A. (1990). High temperature creep of silicon carbide particulate reinforced aluminum. Acta Metallurgica, 38(11), 2149–2159.CrossRefGoogle Scholar
  97. Pollock, T. M, & Field, R. D. (2002). Dislocations and high temperature plastic deformation of superalloys single crystal. In: Nabarro FRN, Duesbery MS, Hirth J, editors. Dislocations in Solids. Amsterdam: Elsevier.Google Scholar
  98. Ratke, L., & Voorhees, P. W. (2002). Growth and Coarsening: Ostwald Ripening in Material Processing. Berlin: Springer.Google Scholar
  99. Reed, R. C. (2006). The Superalloys: Fundamentals and Applications. New York: Cambridge UniversityPress.CrossRefGoogle Scholar
  100. Rosler, J., & Arzt, E. (1990). A new model-based creep equation for dispersion strengthened materials. Acta Metallurgica Et Materialia, 38(4), 671–683.CrossRefGoogle Scholar
  101. Schneibel, J. H., Liu, C. T., Miller, M. K., Mills, M. J. (2009). “Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength,” Scripta Materialia, 61, 793–796.CrossRefGoogle Scholar
  102. Sherby, O. D. (1962). Acta Metallurgica, 10, 135–141.CrossRefGoogle Scholar
  103. Sherby, O., & Burke, P. (1967). Mechanical behavior of crystalline solids at elevated temperature. Progress in Materials Science, 13(7),325.Google Scholar
  104. Sherby, O. D., Klundt, R. H., & Miller, A. K. (1977). Flow stress, subgrain size and subgrain stability at elevated temperature. Metallurgical Transactions A– Physical Metallurgy and Materials Science, 8(6), 843–850.Google Scholar
  105. Sherby, O. D., & Weertman, J. (1979). Diffusion-controlled dislocation creep: A defense. Acta Metallurgica, 27(3), 387–400.CrossRefGoogle Scholar
  106. Shewmon, P. G. (1963). Diffusion in Solids. New York: McGrawHill.Google Scholar
  107. Shewmon, P. G. (1969). Transformation in Metal. New York: McGrawHill.Google Scholar
  108. Sholl, D. S., & Skodje, R. T. (1995). Diffusion of clusters of atoms and vacancies on surfaces and the dynamics of diffusion-driven coarsening. Physical Review Letters, 75(17), 3158–3161.CrossRefGoogle Scholar
  109. Siegert, M. (1998). Coarsening dynamics of crystalline thin films. Physical Review Letters, 81(25), 5481–5484.CrossRefGoogle Scholar
  110. Siegert, M., & Plischke, M. (1994). Slope selection and coarsening in molecular beam epitaxy. Physical Review Letters, 73(11), 1517–1520.CrossRefGoogle Scholar
  111. Simmons, J. P., Rao, S. I., & Dimiduk, D. M. (1998). Simulation of dislocation single kinks in gamma-TiAl using embedded-atom method potentials. Philosophical Magazine Letters, 77(6), 327–336.CrossRefGoogle Scholar
  112. Smilauer, P., & Vvedensky, D. D. (1995). Coarsening and slope evolution during unstable epitaxial growth. Physical Review B, 52(19), 14263–14272.CrossRefGoogle Scholar
  113. Solomon, A. A. (1969). Review of Scientific. Instruments, 40, 1025.CrossRefGoogle Scholar
  114. Song, H. W., Guo, S. R., Lu, D. Z., Xu, Y., Wang, Y. L., Lin, D. L., & Hu, Z. Q. (2000). Compensation effect in creep of conventional polycrystalline alloy 718. Scripta Materialia, 42, 917–922.CrossRefGoogle Scholar
  115. Sriram, S., Dimiduk, D. M., Hazzledine, P. M., & Vasudevan, V. K. (1997). The geometry and nature of pinning points of 1/2 (110) unit dislocations in binary TiAl alloys. Philosophical Magazine A– Physics of Condensed Matter Structure Defects and Mechanical Properties, 76(5), 965–993.Google Scholar
  116. Sung, L., Karim, A., Douglas, J. F., & Han, C. C. (1996). Dimensional crossover in the phase separation kinetics of thin polymer blend films. Physical Review Letters, 76(23), 4368–4371.CrossRefGoogle Scholar
  117. Suri, S., Neeraj, T., Daehn, G. S., Hou, D. H., Scott, J. M., Hayes, R. W., etal. (1997). Mechanisms of primary creep in alpha/beta titanium alloys at lower temperatures. Materials Science and Engineering A– Structural Materials Properties Microstructure and Processing, 234, 996–999.Google Scholar
  118. Takeuchi, S., & Argon, A. S. (1976). Steady state creep of alloys due to viscous motion of dislocations. Acta Metallurgica, 24,883.CrossRefGoogle Scholar
  119. Viswanathan, G. B., Vasudevan, V. K., & Mills, M. J. (1999). Modification of the jogged-screw model for creep of gamma-TiAl. Acta Materialia, 47(5), 1399–1411.CrossRefGoogle Scholar
  120. Viswanathan G. B., Sarosi P. M., Henry M. F., Whitis D. D., Milligan W. W., & Mills M. J. (2005). Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88DT Superalloys. Acta Materialia, 53, 3041–3057.CrossRefGoogle Scholar
  121. Vitek, V. (1974). Theory of the Core Structure of Dislocations in BCC metals Crystal Lattice Defects, 5, 1–34.Google Scholar
  122. Weckert, E. (1985). Strength of Metals and Alloys. Paper presented at the ICSMA7.Google Scholar
  123. Weertman, J. (1957). Steady state creep through dislocation climb. Journal of Applied Physics, 28,1185.CrossRefGoogle Scholar
  124. Weertman, J. (1968). Dislocation climb theory of steady-state creep. ASM Transactions Quarterly, 61(4), 681.Google Scholar
  125. Wilshire, B., & Battenbough, A. J. (2007). Creep and creep fracture of polycrystalline copper. Materials Science and Engineering A– Structural Materials Properties Microstructure and Processing, 443(1–2), 156–166.Google Scholar
  126. Wilshire, B., & Scharning, P. J. (2008). Creep and creep fracture of commercial aluminium alloys. Journal of Materials Science, 43(12), 3992–4000.CrossRefGoogle Scholar
  127. Wilshire, B., Scharning, P. J., & Hurst, R. (2009). A new approach to creep data assessment. Materials Science and Engineering A 510–511,3–6.CrossRefGoogle Scholar
  128. Yi, J., Argon, A. S., & Sayir, A. (2006). Internal stresses and the creep resistance of the directionally solidified ceramic eutectics. Materials Science and Engineering A, 421,86–102.CrossRefGoogle Scholar
  129. Yoshinaga, H., Toma, K., & Morozumi, S. (1976). Japan Institute of Metals, 17,559.Google Scholar
  130. Yurke, B., Pargellis, A. N., Kovacs, T., & Huse, D. A. (1993). Coarsening dynamics of the XY model. Physical Review E, 47(3), 1525–1530.CrossRefGoogle Scholar
  131. Zhang, J. X., Murakumo, T., Koizumi, Y., & Harada, H. (2003). The influence of interfacial dislocation arrangements in a fourth generation single crystal TMS-138 superalloy on creep properties. Journal of Materials Science, 38(24), 4883–4888.CrossRefGoogle Scholar
  132. Zhang, J. X., Koizumi, Y., Kobayashi, T., Murakumo, T., & Harada, H. (2004). Strengthening by gamma/gamma interfacial dislocation networks in TMS-162– toward a fifth-generation single-crystal superalloy. Metallurgical and Materials Transactions A– Physical Metallurgy and Materials Science, 35A(6), 1911–1914.Google Scholar
  133. Zhang, J. X., Koizumi, Y., & Harada, H. (2005a). Strengthening mechanisms in some single-crystal superalloys. 5th Pacific Rim International Conference on Advanced Materials and Processing, 475–479, 623–626.Google Scholar
  134. Zhang, J. X., Wang, J. C., Harada, H., & Koizumi, Y. (2005b). The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Materialia, 53(17), 4623–4633.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations