Accounting for Microstructure in Large Deformation Models of Polycrystalline Metallic Materials

  • C. A. Bronkhorst
  • P. J. Maudlin
  • G. T. GrayIII
  • E. K. Cerreta
  • E. N. Harstad
  • F. L. Addessio


Microstructures of metallic polycrystalline materials are varied and evolve with mechanical deformation. The influence of microstructure on mechanical behavior is discussed in the context of material model development. Several modeling approaches have been developed over the past 80years which have acknowledged the importance of accounting for microstructural details and these are discussed. Examples of two approaches to the large deformation coupled thermomechanical modeling of metallic materials are presented and their differences are compared. First, a macroscale continuum internal state variable-based model is presented for tantalum, which also allows for damage evolution. Next, a multiscale polycrystal plasticity approach is presented, which explicitly represents the polycrystal aggregate. Experiments necessary for both material parameter evaluation (simple compression tests at different strain rates and temperatures) and model validation (dynamic forced shear) are given and discussed. Results from both modeling approaches are compared against results from the forced shear experiments. Both models predict a temperature increase in the shear zone of the sample of 400K due to plastic work and assuming adiabatic conditions. The continuum model performs better than the mesoscale crystal plasticity approach at predicting the load-displacement responses. Although the single crystal model is 3D, the numerical model is 2D and is believed to be restrictive to the deformation response of the polycrystal. This point-of-view is also supported by comparisons between experimental and predicted crystallographic texture in the shear region. Distributions of vonMises stress, temperature, equivalent plastic strain, and equivalent plastic strain rate in the shear region of the sample as predicted by the polycrystal plasticity model are presented. Simulations like this can assist in our understanding of how materials behave and allow us to develop more physically realistic internal state variable theories for use in engineering applications.


Shear Zone Constitutive Model Representative Volume Element Crystallographic Texture Mechanical Threshold Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was conducted under both the DoE Advanced Simulation and Computing program and the joint DoD/DoE Munitions Technology Development Program.


  1. ABAQUS, 2005, Version 6.5–4 User’s manual, ABAQUS Inc., ProvidenceRIGoogle Scholar
  2. Acharya, A., Beaudoin, A. J., 2000, Grain size effect in viscoplastic polycrystals at moderate strains, J. Mech. Phys. Solids 48, 2213–2230.MATHCrossRefGoogle Scholar
  3. Adams, B. L., 1994, Orientation imaging of the microstructure of polycrystalline materials, Proc. Mats. Res. Soc. 343,23–32.Google Scholar
  4. Adams, B. L., Olson, T., 1998, The microstructure properties linkage in polycrystals, J. Prog. Mats. Sci. 42,1–87.CrossRefGoogle Scholar
  5. Addessio, F. L., Johnson, J. N., 1993, Rate-dependent ductile failure model, J. Appl. Phys. 74, 1640–1648.CrossRefGoogle Scholar
  6. Anand, L., 1985, Constitutive equations for the hot-working of metals, Int. J. Plasticity 1, 213–234.MATHCrossRefGoogle Scholar
  7. Arsenlis, A., Barton, N. R., Becker, R., Rudd, R. E., 2006, Generalized in-situ adaptive tabulation for constitutive model evaluation in plasticity, Comput. Meth. Appl. Mech. Eng. 196,1–13.MATHCrossRefGoogle Scholar
  8. Asaro, R. J., Rice, J. R., 1977, Strain localization in ductile single crystals, J. Mech. Phys. Solids 25, 309–338.MATHCrossRefGoogle Scholar
  9. Asaro, R. J., 1983a, Micromechanics of crystals and polycrystals, Adv. Appl. Mech.23,1–115.CrossRefGoogle Scholar
  10. Asaro, R. J., 1983b, Crystal plasticity, ASME J. Appl. Mech.50, 921–934.MATHCrossRefGoogle Scholar
  11. Barton, N. R., Knap, J., Arsenlis, A., Becker, R., Hornung, R. D., Jefferson, D. R., 2008, Embedded polycrystal plasticity and adaptive sampling, Int. J. Plasticity 24, 242–266.CrossRefGoogle Scholar
  12. Becker, R., 2004, Effects of crystal plasticity on materials loaded at high pressures and strain rates, Int. J. Plasticity 20, 1983–2006.MATHCrossRefGoogle Scholar
  13. Boyer, H. E., Gall, T. L., (Eds.), 1985, Metals handbook– desk edition, ASM, Metals Park,OH.Google Scholar
  14. Bronkhorst, C. A., Kalidindi, S. R., Anand, L., 1992, Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals, Phil. Trans. R. Soc. Lond. A, 341, 443–477.CrossRefGoogle Scholar
  15. Bronkhorst, C. A., Cerreta, E. K., Xue, Q., Maudlin, P. J., Mason, T. A., Gray III, G. T., 2006, An experimental and numerical study of the localization behavior of tantalum and stainless steel, Int. J. Plasticity 22, 1304–1335.MATHCrossRefGoogle Scholar
  16. Bronkhorst, C. A., Hansen, B. L., Cerreta, E. K., Bingert, J. F., 2007, Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions, J. Mech. Phys. Solids 55, 2351–2383.MATHCrossRefMathSciNetGoogle Scholar
  17. Busso, E. P., 1990, Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings, Ph.D. Thesis, MIT.Google Scholar
  18. Case, S., Horie, Y., 2007, Discrete element simulation of shock wave propagation in polycrystalline copper, J. Mech. Phys. Solids 55, 589–614.MATHCrossRefGoogle Scholar
  19. Chen, S. R., Gray III, G. T., 1996, Constitutive behavior of tantalum and tantalum-tungsten alloys. Metall. Mater. Trans. A 27A, 2994–3006.CrossRefGoogle Scholar
  20. Diard, O., Leclercq, S., Rousselier, G., Cailletaud, G., 2005, Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity– Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plasticity 21, 691–722.MATHCrossRefGoogle Scholar
  21. Follansbee, P. S., Kocks, U. F., 1988, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36, 81–93.CrossRefGoogle Scholar
  22. Fullwood, D. T., Niezgoda, S. R., Kalidindi, S. R., 2008, Microstructure reconstructions from 2-point statistics using phase-recovery algorithms, Acta Mater. 56, 942–948.CrossRefGoogle Scholar
  23. Gao, X., Przybyla, C. P., Adams, B. L., 2006, Methodology for recovering and analyzing two-point pair correlation functions in polycrystalline materials, Metall. Mater. Trans. 37A, 2379–2387.CrossRefGoogle Scholar
  24. Ghosh, S., Moarthy, S., 2004, Three dimensional voronoi cell finite element model for microstructures with ellipsoidal heterogeneities, Comput. Mech.34, 510–531.MATHGoogle Scholar
  25. Groeber, M., Ghosh, S., Uchic, M. D., Dimiduk, D. M., 2008a, A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: Statistical characterization, Acta Mater. 56, 1257–1273.Google Scholar
  26. Groeber, M., Ghosh, S., Uchic, M. D., Dimiduk, D. M., 2008b, A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation, Acta Mater. 56, 1274–1287.Google Scholar
  27. Gurson, A. L., 1977, Continuum theory of ductile rupture by void nucleation and growth: Part 1– Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99,2–15.CrossRefGoogle Scholar
  28. Gurtin, M. E., Anand, L., 2008, Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction, J. Mech. Phys. Solids 56, 184–199.MATHCrossRefMathSciNetGoogle Scholar
  29. Haghi, M., 1995, A framework for constitutive relations and failure criteria for materials with distributed properties, with application to porous viscoplasticity, J. Mech. Phys. Solids 43, 573–597.MATHCrossRefGoogle Scholar
  30. Hansen, B. L., Bronkhorst, C. A., Ortiz, M., 2009, Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals, J. Mech. Phys. Solids (submitted).Google Scholar
  31. Hill, R., Rice, J. R., 1972, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J.Mech. Phys. Solids 20, 401–413.MATHCrossRefGoogle Scholar
  32. Johnson, G. R., Beissel, S. R., Stryk, R. A., Gerlach, C. A., Holmquist, T. J., 2003, User instructions for the 2003 version of the EPIC code, Network Computing Services Inc., Minneapolis,MN.Google Scholar
  33. Kalidindi, S. R., Bronkhorst, C. A., Anand, L., 1992, Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids 40, 537–569.CrossRefGoogle Scholar
  34. Knap, J., Barton, N. R., Hornung, R. D., Arsenlis, A., Becker, R., Jefferson, D. R., 2008, Adaptive sampling in hierarchical simulation, Int. J. Numer. Meth. Eng. 76, 572–600.MATHCrossRefMathSciNetGoogle Scholar
  35. Kocks, U. F., 1976, Laws for work-hardening and low-temperature creep. J. Eng. Mater. Technol. 98,76–85.CrossRefGoogle Scholar
  36. Kocks, U. F., Argon, A. S., Ashby, M. F., 1975, Thermodynamics and kinetics of slip, Progress in materials science, Pergamon, Oxford.Google Scholar
  37. Kocks, U. F., Tome, C. N., Wenk, H.-R., 1998, Texture and anisotropy, Cambridge University Press, Cambridge,UK.MATHGoogle Scholar
  38. Kothari, M, Anand, L., 1998, Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum, J. Mech. Phys. Solids 46,51–83.MATHCrossRefGoogle Scholar
  39. Lebensohn, R. A., Tome, C. N., 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Applications to zirconium alloys, Acta Metall. Mater. 41, 2611–2624.Google Scholar
  40. Lebensohn, R. A., Tome, C. N., Ponte Casteneda, P., 2007, Self-consistent modelling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations, Philos. Mag. 87, 4287–4322.Google Scholar
  41. Lele, S. P., Anand, L., 2009, A large-deformation strain-gradient theory for isotropic viscoplastic materials, Int. J. Plasticity 25, 420–453.MATHCrossRefGoogle Scholar
  42. Lemaitre, J., Chaboche, J. L., 1990, Mechanics of solid materials, Cambridge University Press, Cambridge,UK.MATHGoogle Scholar
  43. Li, S., Ghosh, S., 2006, Multiple cohesive crack growth in brittle materials by the extended voronoi cell finite element model, Int. J. Fract. 141, 373–393.MATHCrossRefGoogle Scholar
  44. Mason, T. A., Maudlin, P. J., 1999, Effects of higher-order anisotropy elasticity using textured polycrystals in three-dimensional wave propagation problems, Mech. Mater. 31, 861–882.Google Scholar
  45. Maudlin, P. J., Wright, S. I., Kocks, U. F., Sahota, M. S., 1996, An application of multi-surface plasticity theory: yield surfaces of textured materials, Acta Metall. Mater. 44, 4027–4032.Google Scholar
  46. Maudlin, P. J., Bingert, J. F., House, J. W., Chen, S. R., 1999a, On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations, Int. J. Plasticity 15, 139–166.MATHCrossRefGoogle Scholar
  47. Maudlin, P. J., Gray III, G. T., Cady, C. M., Kaschner, G. C., 1999b, High rate material modeling and validation using the Taylor cylinder impact test, Phil. Trans. R. Soc. Lond. A, 357, 1707–1729.CrossRefGoogle Scholar
  48. Maudlin, P. J., Bingert, J. F., Gray III, G. T., 2003a, Low-symmetry plastic deformation in BCC tantalum: experimental observations, modeling and simulations, Int. J. Plasticity 19, 483–515.MATHCrossRefGoogle Scholar
  49. Maudlin, P. J., Mason, T. A., Zuo, Q. H., Addessio, F. L., 2003b, TEPLA-a: Coupled anisotropic elastoplasticity and damage. The Joint DoD/DOE Munitions Technology Program progress report. Vol. 1. LA-UR-14015-PR.Google Scholar
  50. Nemat-Nasser, S., Isaacs, J. B., 1997, Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys, Acta. Mater. 45, 907–919.Google Scholar
  51. Radovitzky, R., Cuitino, A., 2003, Direct numerical simulation of polycrystals. In: Collection of technical papers– structures, structural dynamics and materials conference, Vol. 3, April 7–10, Norfolk, VA, 1920–1928.Google Scholar
  52. Rice, J. R., 1971, Inelastic constitutive relations for solids: an internal variable theory and its applications to metal plasticity, J. Mech. Phys. Solids 19, 433–455.MATHCrossRefGoogle Scholar
  53. Rice, J. R., 1975, Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Constitutive equations in plasticity (A. Argon, ed.), MIT Press, Cambridge,MA.Google Scholar
  54. Rollett, A. D., Lee, S.-B., Campman, R., Rohrer, G. S., 2007, Three-dimensional characterization of microstructure by electron backscatter diffraction, Annu. Rev. Mater. Res. 37, 627–658.CrossRefGoogle Scholar
  55. Sachs, G., 1928, Zur Ableitung einer Fliessbedingung, Z. Ver. Dtsch. Ing. 72, 734–736.Google Scholar
  56. Simmons, G., Wang, H., 1971, Single crystal elastic constants and calculated aggregate properties: A handbook, The MIT Press, Cambridge,MA.Google Scholar
  57. Sinha, S., Ghosh, S., 2006, Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments, Int. J. Fatigue 28, 1690–1704.CrossRefGoogle Scholar
  58. Taylor, G. I., 1938, Plastic strain in metals, J. Inst. Metals 62, 307–324.Google Scholar
  59. Tonks, M. R., Bingert, J. F., Bronkhorst, C. A., Harstad, E. N., Tortorelli, D. A., 2008, Two stochastic mean-field polycrystal plasticity methods, J. Mech. Phys. Solids (submitted)Google Scholar
  60. Tvergaard, V., 1981, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract. 17, 389–407.CrossRefGoogle Scholar
  61. Tvergaard, V., 1982, On localization in ductile materials containing spherical voids, Int. J. Fract. 18, 237–252.Google Scholar
  62. Tvergaard, V., Needleman, A., 1984, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32, 157–169.CrossRefGoogle Scholar
  63. Varshni, Y. P., 1970, Temperature dependence of the elastic constants. Phys. Rev. B 2, 3952–3958.CrossRefGoogle Scholar
  64. Venkataramani, G., Deka, D., Ghosh, S., 2006, Crystal plasticity based Fe model for understanding microstructural effects on creep and dwell fatique in Ti-6242, J. Eng. Mater. Technol., Transactions of the ASME, July, 356–365.Google Scholar
  65. Vogler, T. J., Clayton, J. D., 2008, Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling, J. Mech. Phys. Solids 56, 297–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. A. Bronkhorst
    • 1
  • P. J. Maudlin
  • G. T. GrayIII
  • E. K. Cerreta
  • E. N. Harstad
  • F. L. Addessio
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations