Digital Representation of Materials Grain Structure

  • Michael A. Groeber


Recent initiatives to accelerate the insertion of materials and link the materials design and systems design processes have called for the advancement of microstructure–property relationships. To achieve these goals, the development of digital microstructure models in conjunction with computational methods for simulating material response is a necessity. There have been significant advancements in the collection and representation of microstructure, which coupled with computational power increases, has yielded microstructure models with increasing complexity and accuracy. It is the emphasis of this chapter to discuss the state-of-the-art methods and current limitations in the field of microstructure representation. Specific focus will be paid to the areas of: experimental data collection, feature identification, mesh generation, quantitative characterization, and synthetic structure generation. In presenting the status of the field, the key links to other fields that must be developed will also be addressed wherever possible.


Representative Volume Element Triple Line Equivalent Sphere Diameter March Cube Algorithm Grain Boundary Character Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge his collaborators, all of whom contributed through detailed discussions and in many cases developed some of the tools and techniques presented in this chapter. All of the sections in this chapter were heavily influenced by them and in some instances their own words and terminology were used. The works of Profs. Somnath Ghosh, Tony Rollett, and Marc DeGraef; as well as Drs. David Rowenhorst, Dennis Dimiduk, Mike Uchic, Sukbin Lee, Jeremiah MacSleyne, and Mrs. Yash Bhandari and Steve Sintay and many others have greatly advanced this field and inspired this author.


  1. Amenzua E, Hormaza MV, Hernandez A, Ajurja MBG (1995) Adv Eng Softw 22:45–53CrossRefGoogle Scholar
  2. Barton NR, Dawson PR (2001) Metall Mater Trans 32A:1967–1975CrossRefGoogle Scholar
  3. Barry J (1995) SIAM J Sci Comput 16:1292–1307MATHCrossRefMathSciNetGoogle Scholar
  4. Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S (2007) Comput Mater Sci 41:222–35CrossRefGoogle Scholar
  5. Brahme A, Alvi MH, Saylor D, Fridy J, Rollett AD (2006) Scripta Mater 55:75–80CrossRefGoogle Scholar
  6. Bozzolo N, Dewobroto N, Grosdidier T, Wagner F (2005) Mater Sci Eng A Struct Mater 397:346CrossRefGoogle Scholar
  7. Budai JD, Yang W, Larson BC, Tischler JZ, Liu W, Weiland H, Ice GE (2004) Mater Sci Forum 467–470:1373–1378CrossRefGoogle Scholar
  8. Budai JD, Liu W, Tischler JZ, Pan ZW, Norton DP, Larson BC, Yang W, Ice GE (2008) Thin Solid Films 576:8013–8021CrossRefGoogle Scholar
  9. Bullard JW, Garboczi EJ, Carter WC, Fuller ER (1995) Comput Mater Sci 4:103–116CrossRefGoogle Scholar
  10. Cahn JW, Fullman RL (1956) Trans Metall Soc AIME 206:610–612Google Scholar
  11. Cruz-Orive LM (1976a) J Microsc 107:1–18Google Scholar
  12. Cruz-Orive LM (1976b) J Microsc 107:235–253Google Scholar
  13. DeHoff RT (1962) Trans Metall Soc AIME 224:474–486Google Scholar
  14. Feltham P (1957) Acta Metall 5:97–105CrossRefGoogle Scholar
  15. Fernandes CP (1996) Phys Rev E 54:1734–1741CrossRefGoogle Scholar
  16. Ghosh S, Bhandari Y, Groeber M (2008) J Comput Aided Des 40(3):293–310CrossRefGoogle Scholar
  17. Groeber MA, Haley B, Uchic MD, Ghosh S (2004) In: Ghosh S, Castro J, Lee JK (Eds) Proceedings of NUMIFORM 2004. AIP Publishers, Melville, NYGoogle Scholar
  18. Groeber MA (2007) Ph.D. Thesis, The Ohio State UniversityGoogle Scholar
  19. Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008a) Acta Mater 56:1257–1273CrossRefGoogle Scholar
  20. Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008b) Acta Mater 56:1274–1287CrossRefGoogle Scholar
  21. Gulsoy EB, Simmons JP, De Graef M 2009 Scripta Mater 60:381–384CrossRefGoogle Scholar
  22. Hadwiger H (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, BerlinMATHGoogle Scholar
  23. Hillert M (1962) In: Zackay VF, Aaronson HI (Eds) The Decomposition of Austenite by Diffusional Processes. Interscience, New YorkGoogle Scholar
  24. Hillert M (1965) Acta Metall 13:227–283CrossRefGoogle Scholar
  25. Hopkins RH, Kraft RW (1965) Trans AIME 233:1526–1532Google Scholar
  26. Kammer D, Mendoza R, Voorhees PW (2006) Scripta Mater 55:17–22CrossRefGoogle Scholar
  27. Kenney JF, Keeping ES (1947) In: Mathematics of Statistics. Van NostrandGoogle Scholar
  28. Lauridsen EM, Schmidt S, Nielsen SF, Margulies L, Poulsen HF, Juul Jensen D (2006) Scripta Mater 55:51–56CrossRefGoogle Scholar
  29. Li M, Ghosh S, Richmond O, Weiland H, Rouns TN (1999) Mater Sci Eng A A265:153–173Google Scholar
  30. Lienert U, Almer J, Jakobsen B, Pantleon W, Poulsen HF, Hennessey D, Xiao C, Suter RM (2007) Mater Sci Forum 539–543:2353–2358CrossRefGoogle Scholar
  31. Lorenson WE, Cline HE (1987) Comput Graph 21:163–169CrossRefGoogle Scholar
  32. Louat NP (1974) Acta Metall 22:721–724CrossRefGoogle Scholar
  33. MacPherson RD, Srolovitz DJ (2007) Nature 446:1053CrossRefGoogle Scholar
  34. MacSleyne J, Simmons JP, DeGraef M (2008) Model Sim Mater Sci Eng volume 16 045008CrossRefGoogle Scholar
  35. Oren PE, Bakke S (2002) Transport Porous Media 46:311–343CrossRefGoogle Scholar
  36. Oren PE, Bakke S (2003) J Pet Sci Eng 39:177–199CrossRefGoogle Scholar
  37. Parthasarathy VN, Kodiyalam S (1991) J Finite Elem Anal Des 9:309–320MATHCrossRefGoogle Scholar
  38. Przystupa MA (1997) Scripta Mater 37:1701–1707CrossRefGoogle Scholar
  39. Randle V, Hu Y, Rohrer GS, Kim C-S (2005) Mater Sci Tech 21:1287–1292CrossRefGoogle Scholar
  40. Randle V, Rohrer GS, Hu Y (2008a) Scripta Mater 58:183–186CrossRefGoogle Scholar
  41. Randle V, Rohrer GS, Miller H, Coleman M, Owen G (2008b) Acta Mater 56:2363–2373CrossRefGoogle Scholar
  42. Rhines FN, Craig KR, Rousse DA (1976) Metall Trans A 7A:1729–1734Google Scholar
  43. Rollett AD, Manohar P (2004) In: Raabe D (Ed) Continuum Scale Simulation of Engineering Materials. Wiley-VCH, WeinheimGoogle Scholar
  44. Rowenhorst DJ, Gupta A, Feng CR, Spanos G (2006) Scripta Mater 55:11–16CrossRefGoogle Scholar
  45. Russ JC (1986) The Image Processing Handbook. CRC Press, West Palm Beach, FLGoogle Scholar
  46. Russ JC, DeHoff RT (1986) Practical Stereology. Springer, BerlinGoogle Scholar
  47. Saltykov SA (1958) Stereometric Metallography. Metallurgizdat, MoscowGoogle Scholar
  48. Saylor DM, Morawiec A, Cherry KW, Rogan FH, Rohrer GS, Mahadevan S, Casasent D (2001) In: Gottstein G, Molodov DA (Eds) Proceedings of the First Joint International Conference on Grain Growth. Springer Verlag, AachenGoogle Scholar
  49. Saylor DM, Fridy J, El-Dasher BS, Jung KY, Rollett AD (2004a) Metall Mater Trans A 35A: 1969–1979CrossRefGoogle Scholar
  50. Saylor DM, El-Dasher BS, Adams BL, Rohrer GS (2004b) Metall Mater Trans 35A: 1981–1989CrossRefGoogle Scholar
  51. Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS (2004c) Acta Mater 52:3649–3655CrossRefGoogle Scholar
  52. Schmidt S, Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D (2004) Science 305:229–232CrossRefGoogle Scholar
  53. Simmons JP, Chuang P, Comer ML, Uchic M, Spowart JE, De Graef M (2009) Modell Simul Mater Sci Eng 17:025002CrossRefGoogle Scholar
  54. Spanos G (2006) Scripta Mater 55:3CrossRefGoogle Scholar
  55. Sundararaghavan V, Zabaras N (2005) Comput Mater Sci 32:223–239CrossRefGoogle Scholar
  56. Talukdar MS, Torsaeter O (2002) J Pet Sci Eng 33:265–282CrossRefGoogle Scholar
  57. Talukdar MS, Torsaeter O, Ioannidis MA (2002a) J Colloid Interface Sci 248:419–428CrossRefGoogle Scholar
  58. Talukdar MS, Torsaeter O, Ioannidis MA, Howard JJ (2002b) J Pet Sci Eng 35:1–21CrossRefGoogle Scholar
  59. Talukdar MS, Torsaeter O, Ioannidis MA, Howard JJ (2002c) Transport Porous Media 48:101–123CrossRefGoogle Scholar
  60. Tewari A, Spowart JE, Gokhale AM, Mishra RS, Miracle DB (2006) Mater Sci Eng A 428:80–90CrossRefGoogle Scholar
  61. Torquato S (2001) Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New YorkGoogle Scholar
  62. Underwood E (1970) Quantitative Stereology. Addison-Wesley, New YorkGoogle Scholar
  63. Venkatramani G, Kirane K, Ghosh S (2008) J Plasticity 28:428–454CrossRefGoogle Scholar
  64. Zaafarani N, Raabe D, Singh RN, Zaefferer S (2006) Acta Mater 54:1863–1876CrossRefGoogle Scholar
  65. Zhang C, Suzuki A, Ishimaru T, Enomoto M (2004) Metall Trans A 35A:1927–1932CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials and Manufacturing Directorate, Air Force Research LaboratoryWright-Patterson Air Force BaseDaytonUSA

Personalised recommendations