Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures



This chapter provides an overview of the current state-of-the-art for experimental collection of microstructural data of grain assemblages and other features of similar scale in three dimensions (3D). The chapter focuses on the use of serial sectioning methods and associated instrumentation, as this is the most widely available and accessible technique for collecting such data for the foreseeable future. Specifically, the chapter describes the serial sectioning methodology in detail, focusing in particular on automated systems that can be used for such experiments, highlights possibilities for including crystallographic and chemical data, provides a concise discussion of the post-experiment handling of the data, and identifies current shortcomings and future development needs for this field.


Material Removal Serial Section Microstructural Feature Linear Variable Differential Transformer Integrate Computational Material Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alkemper J, Voorhees PW (2001) Quantitative serial sectioning analysis. J Microsc 201:388–394CrossRefMathSciNetGoogle Scholar
  2. Bansal RK, Kubis A, Hull R, Fitz-Gerald JM (2006) High-resolution three-dimensional reconstruction: a combined scanning electron microscope and focused ion-beam approach. J Vac Sci Technol B 24(2):554–561CrossRefGoogle Scholar
  3. DeHoff RT (1983) Quantitiatve serial sectioning analysis: preview. J Microsc 131:259–263Google Scholar
  4. Dunn DN, Hull R (1999) Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75:3414–3416CrossRefGoogle Scholar
  5. Echlin M, Pollock T (2008) Femtosecond Laser Serial Sectioning: A New Tomographic Technique. WCCM8/ECCOMASGoogle Scholar
  6. Forsman O (1918) Undersökning av rymdstrukturen hos ett kolstå av hypereutectoid sammansättning. Jernkontorets Ann 102:1–30Google Scholar
  7. Gonzales RC, Woods RE (2002) Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  8. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Char 57:259–273CrossRefGoogle Scholar
  9. Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part I: statistical characterization. Acta Mater 56:1257–1273Google Scholar
  10. Gulsoy EB, Simmons JP, De Graef M (2008) Application of joint histogram and mutual information to registration and data fusion problems in serial sectioning microstructure studies. Scripta Mater 60:381–384Google Scholar
  11. Holzer L, Muench B, Wegmann M, Gasser P, Flatt R (2006) FIB-nanotomography of particulate systems—Part I: particle shape and topology of interfaces. J Am Ceram Soc 89:2577–2585CrossRefGoogle Scholar
  12. Ice GE (2004) X-ray microtomography. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure, pp. 461–464. ASM International, Materials Park, OHGoogle Scholar
  13. Ice GE, Pang JWL, Barabash RI, Puzrev Y (2006) Characterization of three-dimensional crystallographic distributions using polychromatic X-ray microdiffraction. Scritpa Mater 55:57–62CrossRefGoogle Scholar
  14. Inkson BJ, Mulvihill M, Möbus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater 45:753–758CrossRefGoogle Scholar
  15. Jorgensen PS, Hansen KV, Larsen R, Bowen JR (2009) A framework for automated segmentation in three dimensions of microstructural tomography data. Ultramicroscopy. doi: 10.1016/j.ultramic.2009.11.013Google Scholar
  16. Juul Jensen D, Lauridsen EM, Margulies L, Poulsen HF, Schmidt S, Sorensen HO, Vaughan GBM (2006) X-ray microscopy in four dimensions. Mater Tod 9:18–25CrossRefGoogle Scholar
  17. Kammer D, Mendoza R, Voorhees PW (2006) Cylindrical domain formation in topologically complex structures. Scripta Mater 55:17–22CrossRefGoogle Scholar
  18. Kammer D, Voorhees PW (2008) Serial sectioning and phase-field simulations. MRS Bull 33:603–610Google Scholar
  19. Kotula PG, Keenan MR, Michael JR (2003) Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool. Microsc Microanal 9:1–17CrossRefGoogle Scholar
  20. Kotula PG, Keenan MR, Michael JR (2006) Tomographic spectral imaging with multivariate statistical analysis: comprehensive 3D microanalysis. Microsc Microanal 12(1):36–48CrossRefGoogle Scholar
  21. Konrad J, Zaefferer S, Raabe D (2006) Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater 54:1369–1380CrossRefGoogle Scholar
  22. Kral M, Spanos G (1999) Three-dimensional analysis of proeutectoid cementite precipitates. Acta Mater 47:711–724CrossRefGoogle Scholar
  23. Kral MV, Mangan MA, Rosenberg RO, Spanos G (2000) Three-dimensional analysis of microstructures. Mater Charact 45:17–23CrossRefGoogle Scholar
  24. Kral MV, Ice GE, Miller MK, Uchic MD, Rosenberg RO (2004) Three dimensional microscopy. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure. ASM International, Materials Park, OHGoogle Scholar
  25. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefGoogle Scholar
  26. Larson BC, Yang W, Ice GE, Budai JD, Tischler JZ (2002) Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415:887–890CrossRefGoogle Scholar
  27. Lewis AC, Bingert JF, Rowenhorst DJ, Gupta A, Geltmacher AB, Spanos G (2006) Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Eng A 418:11–18CrossRefGoogle Scholar
  28. Lewis AC, Geltmacher AB (2006) Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scripta Mater 55:81–85CrossRefGoogle Scholar
  29. Link T, Zabler S, Epishin A, Haibel A, Bansal M, Thibault X (2006) Synchrotron tomography of porosity in single-crystal nickel base superalloys. Mat Sci Eng A 425:47–54CrossRefGoogle Scholar
  30. Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffiere JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905CrossRefGoogle Scholar
  31. Lund AC, Voorhees PW (2002) The effect of elastic stress on microstructural development: the three-dimensional microstructure of a γ-γ alloy. Acta Mater 50:2585–2598CrossRefGoogle Scholar
  32. Madison J, Spowart JE, Rowenhorst DJ, Pollock TM (2008) The three-dimensional reconstruction of the dendrite structure at the solid-liquid interface of a Ni-based single crystal. JOM 60(7): 26–30CrossRefGoogle Scholar
  33. Mangan MA, Lauren PD, Shiflet GJ (1997) Three-dimensional reconstruction of Widmanstätten plates in Fe-123Mn-08C. J Microsc 188:36–41CrossRefGoogle Scholar
  34. Maruyama B, Spowart JE, Hooper DJ, Mullins HM, Druma AM, Druma C, Alam MK (2006) A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Mater 54:1709–1713CrossRefGoogle Scholar
  35. Miller MK, Forbes RG (2009) Atom probe tomography. Mater Charact 60:461–469CrossRefGoogle Scholar
  36. Orloff J, Utlaut M, Swanson L (2003) High Resolution Focused Ion Beams: FIB and Its Applications. Kluwer Academic/Plenum, New YorkGoogle Scholar
  37. Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004CrossRefGoogle Scholar
  38. Russ JC (2002) The Image Processing Handbook, 4th edn. CRC Press, Boca Raton, FLGoogle Scholar
  39. Schaffer M, Wagner J, Schaffer B, Schmied M, Mulders H (2007) Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107:587–597CrossRefGoogle Scholar
  40. Schmidt S, Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D (2004) Watching the growth of bulk grains during recrystallization of deformed metals. Science 305:229–232CrossRefGoogle Scholar
  41. Simmons JP, Chuang P, Comer M, Spowart JE, Uchic MD, De Graef M (2009) Application and further development of advanced image processing algorithms for automated analysis of serial section image data. Mod Sim Mater Sci Eng 17:025002–0250024CrossRefGoogle Scholar
  42. Spanos G (2006) Foreword: scripta materialia viewpoint set on 3D characterization and analysis of materials. Scripta Mater 55:3CrossRefGoogle Scholar
  43. Spanos G, Rowenhorst DJ, Lewis AC, Geltmacher AB (2008) Combining serial sectioning, EBSD analysis, and image-based finite element modeling. MRS Bull 33:597–602Google Scholar
  44. Spowart JE (2006) Automated serial sectioning for 3-D analysis of microstructures. Scripta Mater 55:5–10CrossRefGoogle Scholar
  45. Spowart JE, Mullens HM, Puchala BT (2003) Collecting and analyzing microstructures in three dimensions: a fully automated approach. JOM 55:35–37CrossRefGoogle Scholar
  46. Thornton K, Poulsen HF (2008) Three-dimensional materials science: an intersection of three-dimensional reconstructions and simulations. MRS Bull 33:587–595Google Scholar
  47. Uchic MD (2006) 3D microstructural characterization: methods, analysis, and applications. JOM 58:24CrossRefGoogle Scholar
  48. Uchic MD, Groeber MA, Dimiduk DM, Simmons JP (2006) 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater 55:23–28CrossRefGoogle Scholar
  49. Uchic MD, Holzer L, Inkson BJ, Principe EL, Munroe P (2007) Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull 32:408–416Google Scholar
  50. Wall MA, Schwartz AJ, Nguyen L (2001) A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88:73–83CrossRefGoogle Scholar
  51. Wilson JR, Kobsiriphat W, Mendoza R, Chen HY, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5:541–544CrossRefGoogle Scholar
  52. Wilson JR, Duong AT, Gameiro M, Chen HY, Thornton K, Mumm DR, Barnett SA (2009) Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem Commun 11:1052–1056CrossRefGoogle Scholar
  53. Wojnar L, Kurzydlowski JK, Szala J (2004) Quantitative image analysis. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure. ASM International, Materials Park, OHGoogle Scholar
  54. Wolfsdorf TL, Bender WH, Voorhees PW (1997) The morphology of high volume fraction solid-liquid mixtures: an application of microstructural tomography. Acta Mater 45:2279–2295CrossRefGoogle Scholar
  55. Zaefferer S, Wright SI, Raabe D (2008) Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructural characterization. Metall Mater Trans A 39A:374–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials and Manufacturing Directorate, Air Force Research LaboratoryWright-Patterson Air Force BaseDaytonUSA

Personalised recommendations