Modeling Fatigue Crack Nucleation Using Crystal Plasticity Finite Element Simulations and Multi-time Scaling

  • Somnath Ghosh
  • Masoud Anahid
  • Pritam Chakraborty


This chapter addresses two important aspects of predicting fatigue crack nucleation in polycrystalline alloys under dwell cyclic loading. The first is a microstructure sensitive criterion for dwell fatigue crack initiation in polycrystalline titanium alloys. Local stress peaks due to load shedding from time-dependent plastic deformation fields in neighboring grains are responsible for crack initiation. Crystal plasticity finite element simulation results are post-processed to provide inputs to the fatigue crack nucleation model. The second part of this chapter discusses a wavelet transformation based multi-time scaling (WATMUS) algorithm for accelerated crystal plasticity finite element simulations. The WATMUS algorithm does not require any scale-separation and naturally transforms the coarse time scale response into a “monotonic cycle scale” without the requirement of subcycle resolution. The method significantly enhances the computational efficiency in comparison with conventional single timescale integration methods. Adaptivity conditions are also developed for this algorithm to improve accuracy and efficiency.


Slip System Wavelet Coefficient Crack Nucleation Coarse Scale Crystal Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the US National Science Foundation (Grant # CMMI-0800587, Program Manager: Dr. Clark Cooper), Federal Aviation Administration (Grant # DTFA03-01-C-0019, Program Manager: Dr. Joe Wilson), the Air Force Office of Scientific Research (Grant # FA9550-05-1-0067, Program Manager: Dr. David Stargel) and the Office of Naval Research (Grant # N00014-05-1-0504, Program Manager: Dr. Julie Christodolou). This sponsorship is gratefully acknowledged. Computer support by the Ohio Supercomputer Center through grant PAS813-2 is also gratefully acknowledged.


  1. Acharya, A. and Beaudoin, A.J.: Grain-size effect in viscoplastic polycrystals at moderate strains. J. Mech. Phys. Solids 48, 2213–2230 (2000)CrossRefMATHGoogle Scholar
  2. Anahid, M., Chakraborty, P., Joseph, D.S. and Ghosh, S.: Wavelet decomposed dual-time scale crystal plasticity FE model for analyzing cyclic deformation induced crack nucleation in polycrystals. Model. Simul. Mater. Sci. Eng. 37, 064009 (2009)CrossRefGoogle Scholar
  3. Antolovich, S.D., Liu, S. and Baur, R.: Low cycle fatigue behavior of Rene 60 at elevated temperature. Metal. Trans. 12A, 473–481 (1981)Google Scholar
  4. Asaro, R.J., and Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977)CrossRefMATHGoogle Scholar
  5. Ashby, M.F.: The deformation of plastically non-homogeneous materials. Phil Mag. 21, 399–424 (1970)CrossRefGoogle Scholar
  6. Bache, M.R.: A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, Texture and Operating Conditions. Int. J. Fatigue. 25, 1079–1087 (2003)Google Scholar
  7. Baker, I.: Improving the ductility of intermetallic compounds by particle-induced slip homogenization. Scripta Materialia 41(4), 409–414 (1999)CrossRefGoogle Scholar
  8. Balasubramanian, S., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homogeneous temperatures, J. Mech. Phys. Solids. 50, 101–126 (2002)CrossRefMATHGoogle Scholar
  9. Bathe, K.J.: Finite element procedures, Prentice Hall (1995)Google Scholar
  10. Beaudoin, A.J., Mecking, H. and Kocks, U.F.: Development of local shear bands and orientation gradients in fcc polycrystals. In Shen, S.F. and Dawson, P.R. (eds.), Simulation of Materials Processing; Theory, Methods and Applications, NUMIFORM’95, pp. 225–230, A.A. Balkema, Rotterdam (1995)Google Scholar
  11. Bennett, V.P. and McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue. 25, 27–39 (2003)CrossRefMATHGoogle Scholar
  12. Bhandari, Y., Sarkar, S., Groeber, M., Uchic, M., Dimiduk D. and Ghosh, S.: 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE Analysis. Comp. Mater. Sci. 41, 222–235 (2007)CrossRefGoogle Scholar
  13. Blekhman, I.I.: Vibrational Mechanics, World Scientific (2000)Google Scholar
  14. Chow, C.L. and Wei, Y.: A model of continuum damage mechanics for fatigue failure. Int. J. Fracture 50, 301–316 (1991)CrossRefGoogle Scholar
  15. Chu, R.Q., Cai, Z., Li, S.X., and Wang, Z.G.: Fatigue crack initiation and propagation in an a-iron polycrystals. Mater. Sci. Eng. 313, 61–68 (2001)Google Scholar
  16. Coffin, L.F.: Fatigue. Ann. Rev. Matls. Sci. 2, 313–348 (1973)CrossRefGoogle Scholar
  17. Crisfield, M.A.: Non-linear finite element analysis of solids and continuam, Academic (1996)Google Scholar
  18. Dawson, P. R.: Computational crystal plasticity. Int. J. Sol. Struct. 37, 115–130 (2000)CrossRefMATHGoogle Scholar
  19. Deka, D., Joseph, D.S., Ghosh, S. and Mills, M.J.: Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall. Trans. A. 17A(5), 1371–1388 (2006)CrossRefGoogle Scholar
  20. Engelen, R.A.B., Geers, M.G.D. and Baaijens F.P.T.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modeling of softening behavior. Int. J. Plasticity 19, 403–433 (2003)CrossRefMATHGoogle Scholar
  21. Fish, J. and Yu, Q.: Computational mechanics of fatigue and life predictionsfor composite materials and structures. Comp. Meth. Appl. Mech. Eng. 191, 4827–4849 (2002)CrossRefMATHGoogle Scholar
  22. Fleck, N.A., Kang, K.J. and Ashby, M.F.: The cyclic properties of engineering materials. Acta Metall. Mater. 42, 365–381 (1994)CrossRefGoogle Scholar
  23. Fredell, R.S.: Operational needs for a paradigm shift in life prognosis. Workshop on Prognosis of Aircraft and Space Devices, Components, and Systems, University of Cincinnati, Cincinnati, Ohio (2008)Google Scholar
  24. Ghosh, S., Bhandari, Y. and Groeber, M.: CAD based reconstruction of three dimensional polycrystalline microstructures from FIB generated serial sections. J. Comput. Aid. Des. 40(3), 293–310 (2008)CrossRefGoogle Scholar
  25. Goh, C.H., Neu, R.W. and McDowell, D.L.: Crystallographic plasticity in fretting of Ti-6Al-4V. Int. J. Plasticity 19, 1627–1650 (2003)CrossRefMATHGoogle Scholar
  26. Goh, C.H., Wallace, J.M., Neu, R.W. and McDowell, D.L.: Polycrystal plasticity simulations of fretting fatigue. Int. J. Fatigue 23, 5423–5435 (2001)CrossRefGoogle Scholar
  27. Groeber, M.: Development of an automated characterization-representation framework for the modeling of polycrystalline materials in 3D. Ph.D. dissertation. The Ohio State University, Columbus, OH (2007)Google Scholar
  28. Groeber, M., Ghosh, S., Uchic, M.D. and Dimiduk, D.M.: A framework for automated analysis and representation of 3D polycrystalline microstructures, part 1: statistical characterization. Acta. Mater. 56(6), 1257–1273 (2008)CrossRefGoogle Scholar
  29. Groeber, M., Ghosh, S., Uchic, M.D. and Dimiduk, D.M.: A framework for automated analysis and representation of 3D polycrystalline microstructures, part 2: synthetic structure generation. Acta. Mater. 56(6), 1274–1287 (2008)CrossRefGoogle Scholar
  30. Harren, S.V., and Asaro, R.J.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids. 37(2), 191–232 (1989)CrossRefMATHGoogle Scholar
  31. Hashimoto, T.M. and Pereira, M.S.: Fatigue life studies in carbon dual-phase steels. Int. J. Fatigue. 18(8), 529–533 (1996)CrossRefGoogle Scholar
  32. Hasija, V., Ghosh, S., Mills, M.J. and Joseph, D.S.: Modeling deformation and creep in Ti-6Al alloys with experimental validation. Acta Mater. 51, 4533–4549 (2003)CrossRefGoogle Scholar
  33. Harder, J.: Crystallographic model for the study of local deformation processes in polycrystals. Int. J. Plastic. 15, 605–624 (1999)CrossRefMATHGoogle Scholar
  34. Inman, M.A. and Gilmore, C.M.: Room temperature creep of Ti-6Al-4V. Metall. Trans. A. 10A, 419–425 (1979)Google Scholar
  35. Kalidindi, S.R., Bronkhorst, C.A. and Anand, L.: Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids. 40, 537–569 (1992)CrossRefGoogle Scholar
  36. Kalidindi, S.R., Bronkhorst, C.A. and Anand, L.: On the accuracy of the Taylor assumption in polycrystalline plasticity. In Boehler, J.P. and Khan, A.S. (eds.), Anisotropy and Localization of Plastic Deformation, pp. 139–142, Elsevier Applied Science, London and New York (1991)Google Scholar
  37. Kirane, K. and Ghosh, S.: A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE model. Int. J. Fatigue 30, 2127–2139 (2008)CrossRefGoogle Scholar
  38. Kirane, K., Ghosh, S., Groeber, M. and Bhattacharjee, A.: Crystal plasticity finite element based grain level crack nucleation criterion for Ti-6242 alloys under dwell loading. J. Eng. Mater. Tech. ASME 131, 27–37 (2009)Google Scholar
  39. Laird, C.M.: The fatigue limit of metals. Mater. Sci. Eng. 22, 231–236 (1976)CrossRefGoogle Scholar
  40. Lord, D.C. and Coffin, L.F.: Low cycle fatigue hold time behavior of cast Rene 80. Metal. Trans. 4, 1647–1653 (1973)CrossRefGoogle Scholar
  41. Manchiraju, S., Asai, M. and Ghosh, S.: A dual time scale finite element model for simulating cyclic deformation of polycrystalline alloys. J. Strain Anal. Engrg. Des. 42, 183–200 (2007)CrossRefGoogle Scholar
  42. Manchiraju, S., Kirane, K. and Ghosh, S.: Dual-time scale crystal plasticity FE model for cyclic deformation of Ti alloys. J. Comp. Aid. Des. 14, 47–61 (2008)Google Scholar
  43. Mathur, K.K., Dawson, P.R. and Kocks, U.F.: On modeling anisotropy in deformation processes involving textured polycrystals with distorted grain shape. Mech. Mater. 10, 183–202 (1990)CrossRefGoogle Scholar
  44. McClung, R.C., Enright, M.P., Millwater, H.R., Leverant, G.R., and Hudak, S.J.: A software framework for probabilistic fatigue life assessment of gas turbine engine rotors. J. ASTM Int. 1(8), JAI19025-12 (2004)Google Scholar
  45. Mineur, M., Villechaise, P., and Mendez, J.: Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel, Mater. Sci. Eng. A286, 257–268 (2000)Google Scholar
  46. Morrissey, R.J., McDowell, D.L., and Nicholas, T.: Microplasticity in HCF of Ti-6Al-4V. Int. J. Fatigue. 23, S55–S64 (2001)CrossRefGoogle Scholar
  47. Neeraj, T., Hou, D.H., Daehn, G.S. and Mills, M.J.: Phenomenological and microstructural analysis of room temperature creep in Titanium alloys. Acta Mater. 48, 1225–1238 (2000)CrossRefGoogle Scholar
  48. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta. Metall. 1, 153–162 (1953)CrossRefGoogle Scholar
  49. Oskay, C. and Fish, J.: Fatigue Life Prediction using 2-scale Temporal Asymptotic Homogenization. Int. J. Numer. Meth. Eng. 61, 329–359 (2004)CrossRefMathSciNetMATHGoogle Scholar
  50. Oskay, C. and Fish, J.: Multiscale modeling of fatigue for ductile materials. Int. J. Multiscale Comput. Eng. 2, 1–25 (2004)CrossRefGoogle Scholar
  51. Paas, M.H.J.W., Schreurs, P.J.G. and Berkelmans, W.A.M.: A continuum approach to brittle and fatigue Damage: theory and numerical Procedures. Int. J. Solids Struct. 30, 579–599 (1993)CrossRefMATHGoogle Scholar
  52. Paris, P.C.: The fracture mechanics approach to fatigue, Fatigue-An Interdisciplinary Approach, Syracuse University Press, Syracuse (1964)Google Scholar
  53. Parvatareddy, H. and Dillard, D.A.: Effect of mode-mixity on the fracture toughness of Ti-6Al-4V/FM-5 adhesive joints. Int. J. Fracture 96, 215–228 (1999)CrossRefGoogle Scholar
  54. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)Google Scholar
  55. Rokhlin, S., Kim, J.Y. and Zoofan, B.: The Ohio State University, Columbus, OH., unpublished research (2005)Google Scholar
  56. Ruiz, G., Pandolfi, A. and Oritz, M.: Three-dimensional cohesive modeling of dynamic mixed mode fracture. Int. J. Numer. Meth. Eng. 52, 97–120 (2001)CrossRefGoogle Scholar
  57. Sinha, S. and Ghosh, S.: Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int. J. Fatigue. 28, 1690–1704 (2006)CrossRefGoogle Scholar
  58. Sinha, V., Mills, M.J. and Williams, J.C.: Crystallography of fracture facets in a near alpha titanium alloy. Metall. Trans. A. 37A, 2015–2026 (2006)CrossRefGoogle Scholar
  59. Sinha, V., Spowart, J.E., Mills, M.J. and Williams, J.C.: Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects. Metall. Trans. A. 37A, 1507–1518 (2006)CrossRefGoogle Scholar
  60. Smith, E.: Cleavage fracture in mild steel. Acta Metal. 14, 985–989 (1966)CrossRefGoogle Scholar
  61. Smith, E.: Disloc1ations and cracks. In Nabarro, F.R.N. (ed.), Dislocations in Solids 4, North Holland Amsterdam, The Netherlands, 363 (1979)Google Scholar
  62. Strang, G. and Nguyen, T.: Wavelets and filter banks, Wellessey College (1996)Google Scholar
  63. Stroh, A.N.: A theory of the fracture of metals. Adv. Phys. 6, 418–465 (1957)Google Scholar
  64. Stroh, A.N.: The formation of cracks as a result of plastic flow. Proc. R. Soc. London, Ser. A. 223, 404–414 (1954)Google Scholar
  65. Suresh, S.: Fatigue of Materials, Cambridge University Press, Cambridge (1998)Google Scholar
  66. Tanaka, K. and Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97–103 (1981)CrossRefMATHGoogle Scholar
  67. Thomsen, J.J.: Vibrations and Stability: Theory, Analysis and Tools, Springer, Berlin (2004)Google Scholar
  68. Tsuji, H. and Kondo, T.: Strain-time effects in low cycle fatigue of Nickel-based heat resistant alloys at high temperature. J. Nucl. Mater. 190, 259–265 (1987)CrossRefGoogle Scholar
  69. Turkmen, H.S., Loge, R.E., Dawson, P.R. and Miller, M.: On the mechanical behavior of AA 7075-T6 during cyclic loading. Int. J. Fatigue. 25, 267–281 (2003)CrossRefGoogle Scholar
  70. Venkatramani, G., Deka, D. and Ghosh, S.: Crystal plasticity based FE model for understanding microstructural effects on creep and dwell fatigue in Ti-6242, ASME J. Eng. Mater. Tech. 128(3), 356–365 (2006)CrossRefGoogle Scholar
  71. Venkataramani, G., Ghosh, S. and Mills, M.J.: A size dependent crystal plasticity finite element model for creep and load-shedding in polycrystalline Titanium alloys. Acta Mater. 55, 3971–3986 (2007)CrossRefGoogle Scholar
  72. Venkataramani, G., Kirane, K. and Ghosh, S.: Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int. J. Plas. 24, 428–454 (2008)CrossRefMATHGoogle Scholar
  73. Walker, J.S.: A primer on wavelets and their scientific applications, CRC (1999)Google Scholar
  74. Williams et al.: The evaluation of cold dwell fatigue in Ti-6242. FAA report summary, The Ohio State University (2006)Google Scholar
  75. Woodfield, A.P., Gorman, M.D., Corderman, R.R., Sutliff, J.A., and Yamron, B.: Effect of microstructure on dwell fatigue behaviour of Ti-6242. Titanium ’95 Science and Technology, 1116–1124 (1995)Google Scholar
  76. Xie, C.L., Ghosh, S. and Groeber, M.: Modeling cyclic deformation of HSLA steels using crystal plasticity. ASME J. Eng. Mater. Tech. 126, 339–352 (2004)CrossRefGoogle Scholar
  77. Yu, Q. and Fish, J.: Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comput. Mech. 29, 199–211 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Somnath Ghosh
    • 1
  • Masoud Anahid
  • Pritam Chakraborty
  1. 1.Department of Mechanical Engineering, W496 Scott LaboratoryThe Ohio State UniversityColumbusUSA

Personalised recommendations