Advertisement

Future Directions in Research on the Epigenetics of Aging

  • Charles W. Caldwell
  • Huidong Shi

Abstract

Epigenetics of aging is a new research direction that brings exciting and in-depth revelations in the near future. As reviewed in chapters throughout this book, aging is likely to be influenced by many complex interacting epigenetic factors. These include DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. With the help of new technologies, particularly the knowledge derived from the genome-wide epigenomic studies, the upcoming years will be an exciting time to make breakthroughs in research on epigenetics of aging. Here we focus on several new directions in epigenetic research overall and their potential influence on aging research and the potential of anti-aging intervention using personalized, epigenetic-targeted pharmacologic agents.

Keywords

Epigenome Aging Epigenetic-targeted therapy 

References

  1. Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X., Richmond, T. A., Middle, C. M., Rodesch, M. J., Packard, C. J., Weinstock, G. M. and Gibbs, R. A. 2007. Direct selection of human genomic loci by microarray hybridization. Nat Methods. 4:903–905.CrossRefPubMedGoogle Scholar
  2. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–837.CrossRefPubMedGoogle Scholar
  3. Bernstein, B. E., Meissner, A., and Lander, E. S. 2007. The mammalian epigenome. Cell 128:669–681.CrossRefPubMedGoogle Scholar
  4. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326.CrossRefPubMedGoogle Scholar
  5. Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H., Yu, W., Rongione, M. A., Ekstrom, T. J., Harris, T. B., Launer, L. J., Eiriksdottir, G., Leppert, M. F., Sapienza, C., Gudnason, V., and Feinberg, A. P. 2008. Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883.CrossRefPubMedGoogle Scholar
  6. Bock, C. and Lengauer, T. 2008. Computational epigenetics. Bioinformatics. 24:1–10.CrossRefPubMedGoogle Scholar
  7. Brena, R. M., Huang, T. H., and Plass, C. 2006. Toward a human epigenome. Nat. Genet. 38:1359–1360.CrossRefPubMedGoogle Scholar
  8. Chen, C. M., Chen, H. L., Hsiau, T. H., Hsiau, A. H., Shi, H., Brock, G. J., Wei, S. H., Caldwell, C. W., Yan, P. S., and Huang, T. H. 2003. Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am. J. Pathol. 163:37–45.PubMedGoogle Scholar
  9. Davis, C. D. and Ross, S. A. 2008. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr. Rev. 66:477–482.CrossRefPubMedGoogle Scholar
  10. Dahl, F., Stenberg, J., Fredriksson, S., Welch, K., Zhang, M., Nilsson, M., Bicknell, D., Bodmer, W. F., Davis, R. W., and Ji, H. 2007. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc. Natl. Acad. Sci. USA 104:9387–9392.CrossRefPubMedGoogle Scholar
  11. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. V., Davies, R., Down, T. A., Haefliger, C., Horton, R., Howe, K., Jackson, D. K., Kunde, J., Koenig, C., Liddle, J., Niblett, D., Otto, T., Pettett, R., Seemann, S., Thompson, C., West, T., Rogers, J., Olek, A., Berlin, K., and Beck, S. 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38:1378–1385.CrossRefPubMedGoogle Scholar
  12. Espin, J. C., Garcia-Conesa, M. T., and Tomas-Barberan, F. A. 2007. Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008.CrossRefPubMedGoogle Scholar
  13. Esteller, M. 2006. The necessity of a human epigenome project. Carcinogenesis 27:1121–1125.CrossRefPubMedGoogle Scholar
  14. European Union, Network of Excellence, Scientific Advisory Board, 2008. Moving AHEAD with an international human epigenome project. Nature 454:711–715.Google Scholar
  15. Feinberg, A. P. 2008. Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350.CrossRefPubMedGoogle Scholar
  16. Feinberg, A. P., Ohlsson, R., and Henikoff, S. 2006. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7:21–33.CrossRefPubMedGoogle Scholar
  17. Fraga, M. F. and Esteller, M. 2007. Epigenetics and aging: the targets and the marks. Trends Genet. 23:413–418.CrossRefPubMedGoogle Scholar
  18. Fredriksson, S., Banér, J., Dahl, F., Chu, A., Ji, H., Welch, K., and Davis, R. W. 2007. Multiplex amplification sequences within 10 cancer genes by Gene-Collector. Nucleic Acids Res.35:e47.CrossRefPubMedGoogle Scholar
  19. Gal-Yam, E. N., Saito, Y., Egger, G., and Jones, P. A. 2008. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med. 59:267–280.CrossRefPubMedGoogle Scholar
  20. Garcia-Manero, G., Kantarjian, H. M., Sanchez-Gonzalez, B., Yang, H., Rosner, G., Verstovsek, S., Rytting, M., Wierda, W. G., Ravandi, F., Koller, C., Xiao, L., Faderl, S., Estrov, Z., Cortes, J., O’Brien, S., Estey, E., Bueso-Ramos, C., Fiorentino, J., Jabbour, E., and Issa, J. P. 2006. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279.CrossRefPubMedGoogle Scholar
  21. Gebhard, C., Schwarzfischer, L., Pham, T. H., Schilling, E., Klug, M., Andreesen, R., and Rehli, M. 2006. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 66:6118–6128.CrossRefPubMedGoogle Scholar
  22. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., and Cedar, H. 2003. The role of DNA methylation in setting up chromatin structure during development. Nat. Genet. 34:187–192.CrossRefPubMedGoogle Scholar
  23. Huang, T. H., Perry, M. R., and Laux, D. E. 1999. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8:459–470.CrossRefPubMedGoogle Scholar
  24. Issa, J. P. 2005. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat. Clin. Pract. Oncol. 2 Suppl 1:S24–S29.CrossRefPubMedGoogle Scholar
  25. Issa, J. P., Gharibyan, V., Cortes, J., Jelinek, J., Morris, G., Verstovsek, S., Talpaz, M., Garcia-Manero, G., and Kantarjian, H. M. 2005. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 23:3948–3956.Google Scholar
  26. Jirtle, R. L. and Skinner, M. K. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8:253–262.CrossRefPubMedGoogle Scholar
  27. Jones, P. A. and Martienssen, R. 2005. A blueprint for a human epigenome project: the AACR human epigenome workshop. Cancer Res. 65:11241–11246.CrossRefPubMedGoogle Scholar
  28. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R. A., Niveleau, A., Cedar, H., and Simon, I. 2006. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38:149–153.CrossRefPubMedGoogle Scholar
  29. Kirmizis, A. and Farnham, P. J. 2004. Genomic approaches that aid in the identification of transcription factor target genes. Exp. Biol. Med. (Maywood.) 229:705–721.Google Scholar
  30. Kuang, S. Q., Tong, W. G., Yang, H., Lin, W., Lee, M. K., Fang, Z. H., Wei, Y., Jelinek, J., Issa, J. P., and Garcia-Manero, G. 2008. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia. 22:1529–1538.Google Scholar
  31. Laird, P. W. 2005. Cancer epigenetics. Hum. Mol. Genet. 14 Spec No 1:R65–R76.CrossRefPubMedGoogle Scholar
  32. Lemaire, M., Chabot, G. G., Raynal, N. J., Momparler, L. F., Hurtubise, A., Bernstein, M. L., and Momparler, R. L. 2008a. Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer. BMC. Cancer 8:128.CrossRefPubMedGoogle Scholar
  33. Lemaire, M., Momparler, L. F., Bernstein, M. L., Marquez, V. E., and Momparler, R. L. 2005. Enhancement of antineoplastic action of 5-aza-2'-deoxycytidine by zebularine on L1210 leukemia. Anticancer Drugs 16:301–308.CrossRefPubMedGoogle Scholar
  34. Lemaire, M., Momparler, L. F., Raynal, N. J., Bernstein, M. L., and Momparler, R. L. 2008b. Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2'-deoxycytidine. Cancer Chemother. Pharmacol.Google Scholar
  35. Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., Gnirke, A., Jaenisch, R., and Lander, E. S. 2008. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature.Google Scholar
  36. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560.CrossRefPubMedGoogle Scholar
  37. Momparler, R. L. 2005. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine). Semin. Oncol. 32:443–451.CrossRefPubMedGoogle Scholar
  38. Momparler, R. L. 2003. Cancer epigenetics. Oncogene 22:6479–6483.CrossRefPubMedGoogle Scholar
  39. Oberley, M. J., Tsao, J., Yau, P., and Farnham, P. J. 2004. High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol. 376:315–334.CrossRefPubMedGoogle Scholar
  40. Okou, D. T., Steinberg, K. M., Middle, C., Cutler, D. J., Albert, T. J., and Zwick, M. E. 2007. Microarray-based genomic selection for high-throughput resequencing. Nat. Methods 4:907–909.CrossRefPubMedGoogle Scholar
  41. Ovesna, J., Slaby, O., Toussaint, O., Kodicek, M., Marsik, P., Pouchova, V., and Vanek, T. 2008. High throughput ‘omics’ approaches to assess the effects of phytochemicals in human health studies. Br. J. Nutr. 99 E Suppl 1:ES127–ES134.CrossRefPubMedGoogle Scholar
  42. Plimack, E. R., Stewart, D. J., and Issa, J. P. 2007. Combining epigenetic and cytotoxic therapy in the treatment of solid tumors. J. Clin. Oncol. 25:4519–4521.CrossRefPubMedGoogle Scholar
  43. Porreca, G. J., Zhang, K., Li, J. B., Xie, B., Austin, D., Vassallo, S. L., LeProust, E. M., Peck, B. J., Emig, C. J., Dahl, F., Gao, Y., Church, G. M., and Shendure, J. 2007. Multiplex amplification of large sets of human exons. Nat Methods 4:931–936.CrossRefPubMedGoogle Scholar
  44. Raynal, N. J., Momparler, L., Charbonneau, M., and Momparler, R. L. 2008. Antileukemic activity of genistein, a major isoflavone present in soy products. J. Nat. Prod. 71:3–7.CrossRefPubMedGoogle Scholar
  45. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., and Jones, S. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4:651–657.CrossRefPubMedGoogle Scholar
  46. Rodenhiser, D. and Mann, M. 2006. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 174:341–348.PubMedGoogle Scholar
  47. Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., and Bestor, T. H. 2006. Large-scale structure of genomic methylation patterns. Genome Res. 16:157–163.CrossRefPubMedGoogle Scholar
  48. Saxonov, S., Berg, P., and Brutlag, D. L. 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 103:1412–1417.CrossRefPubMedGoogle Scholar
  49. Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., Eden, E., Yakhini, Z., Ben-Shushan, E., Reubinoff, B. E., Bergman, Y., Simon, I., and Cedar, H. 2007. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39:232–236.CrossRefPubMedGoogle Scholar
  50. Schumacher, A., Kapranov, P., Kaminsky, Z., Flanagan, J., Assadzadeh, A., Yau, P., Virtanen, C., Winegarden, N., Cheng, J., Gingeras, T., and Petronis, A. 2006. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34:528–542.CrossRefPubMedGoogle Scholar
  51. Shaker, S., Bernstein, M., Momparler, L. F., and Momparler, R. L. 2003. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk. Res. 27:437–444.CrossRefPubMedGoogle Scholar
  52. Shi, H., Maier, S., Nimmrich, I., Yan, P. S., Caldwell, C. W., Olek, A., and Huang, T. H. 2003. Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J. Cell Biochem. 88:138–143.CrossRefPubMedGoogle Scholar
  53. Shi, H., Yan, P. S., Chen, C. M., Rahmatpanah, F., Lofton-Day, C., Caldwell, C. W., and Huang, T. H. 2002. Expressed CpG island sequence tag microarray for dual screening of DNA hypermethylation and gene silencing in cancer cells. Cancer Res. 62:3214–3220.PubMedGoogle Scholar
  54. Soriano, A. O., Yang, H., Faderl, S., Estrov, Z., Giles, F., Ravandi, F., Cortes, J., Wierda, W. G., Ouzounian, S., Quezada, A., Pierce, S., Estey, E. H., Issa, J. P., Kantarjian, H. M., and Garcia-Manero, G. 2007. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110:2302–2308.CrossRefPubMedGoogle Scholar
  55. Squazzo, S. L., O’Geen, H., Komashko, V. M., Krig, S. R., Jin, V. X., Jang, S. W., Margueron, R., Reinberg, D., Green, R., and Farnham, P. J. 2006. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16:890–900.CrossRefPubMedGoogle Scholar
  56. Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., Caldwell, C. W., and Shi, H. 2007. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67:8511–8518.CrossRefPubMedGoogle Scholar
  57. Tomazou, E. M., Rakyan, V. K., Lefebvre, G., Andrews, R., Ellis, P., Jackson, D. K., Langford, C., Francis, M. D., Backdahl, L., Miretti, M., Coggill, P., Ottaviani, D., Sheer, D., Murrell, A., and Beck, S. 2008. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC) and its application for DNA methylation analysis. BMC. Med. Genomics 1:19.CrossRefPubMedGoogle Scholar
  58. Weinmann, A. S., Yan, P. S., Oberley, M. J., Huang, T. H., and Farnham, P. J. 2002. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16:235–244.CrossRefPubMedGoogle Scholar
  59. Yan, P. S., Perry, M. R., Laux, D. E., Asare, A. L., Caldwell, C. W., and Huang, T. H. 2000. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res. 6:1432–1438.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pathology and Anatomical Sciences, Ellis Fischel Cancer CenterUniversity of MissouriColumbiaUSA
  2. 2.Department of Pathology and Anatomical Sciences, Ellis Fischel Cancer CenterUniversity of Missouri School of MedicineColumbiaUSA

Personalised recommendations