Skip to main content

DNA Methylation and Osteoarthritis

  • Chapter
  • First Online:
  • 1590 Accesses

Abstract

Osteoarthritis is a debilitating and progressive disease that affects around two-thirds of people of retirement age. A key feature is the degradation of articular cartilage, leading to loss of shock-absorbing capacity, pain, and difficulties in articulation of the joints. The enzymes involved in the cartilage degradation are, paradoxically, produced by the chondrocytes, which undergo a phenotypic change from normal chondrocytes, which express the typical chondrocytic genes (collagens type II, IX, and XI, aggrecan, Sox-9, etc.), to cells that aberrantly express cartilage matrix-degrading proteases and other genes that are not part of the normal repertoire of chondrocytes. This chapter evaluates the evidence that DNA de-methylation at critical CpG sites in the relevant promoters underlies the aberrant expression of non-chondrocytic genes. Although definitive data are still limited, evidence is presented that the aberrant expression of MMP-3, MMP-9, MMP-13, ADAMTS-4, and leptin is associated with loss of CpG methylation. Another feature of osteoarthritis is the silencing of many genes that are expressed by normal chondrocytes. This does not seem to be connected to hyper-methylation of the CpG island promoters of type II collagen, aggrecan or p21WAF1/CIP1 (an inhibitor of proliferation), although there is some evidence that hyper-methylation might contribute to the silencing of osteogenic protein-1, an anabolic factor for cartilage. Further work is urgently needed to investigate not only the CpG methylation status of other genes that are induced or silenced in osteoarthritis but also the mechanisms involved in the loss of methylation and the factors that might initiate this loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aigner, T., and Dudhia, J. 1997. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann. Rheum. Dis. 56:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Aigner, T., Fundel, K., Saas, J., Gebhard, P. M., Haag, J., Weiss, T., Zien, A., Obermayr, F., Zimmer, R., and Bartnik, E. 2006a. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum. 54:3533–3544.

    Article  PubMed  CAS  Google Scholar 

  • Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P. M., and Knorr, T. 2004. Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis. Methods Mol. Med. 100:109–128.

    PubMed  CAS  Google Scholar 

  • Aigner, T., Sachse, A., Gebhard, P. M., and Roach, H. I. 2006b. Osteoarthritis: Pathobiology-targets and ways for therapeutic intervention. Adv. Drug Deliv. Rev. 58:128–149.

    Article  PubMed  CAS  Google Scholar 

  • Aigner, T., and Stove, J. 2003. Collagens – major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv. Drug Deliv. Rev. 55:1569–1593.

    Article  PubMed  CAS  Google Scholar 

  • Aigner, T., Zien, A., Hanisch, D., and Zimmer, R. 2003. Gene expression in chondrocytes assessed with use of microarrays. J. Bone Joint Surg. Am. 85-A Suppl 2:117–123.

    Google Scholar 

  • Aoyama, T., Okamoto, T., Nagayama, S., Nishijo, K., Ishibe, T., Yasura, K., Nakayama, T., Nakamura, T., and Toguchida, J. 2004. Methylation in the core-promoter region of the chondromodulin-I gene determines the cell-specific expression by regulating the binding of transcriptional activator Sp3. J. Biol. Chem. 279:28789–28797.

    Article  PubMed  CAS  Google Scholar 

  • Attwood, J. T., Yung, R. L., and Richardson, B. C. 2002. DNA methylation and the regulation of gene transcription. Cell Mol. Life Sci. 59:241–257.

    Article  PubMed  CAS  Google Scholar 

  • Ayache, N., Boumediene, K., Mathy-Hartert, M., Reginster, J. Y., Henrotin, Y., and Pujol, J. P. 2002. Expression of TGF-betas and their receptors is differentially modulated by reactive oxygen species and nitric oxide in human articular chondrocytes. Osteoarthritis Cartilage. 10: 344–352.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. L. 2007. The complex language of chromatin regulation during transcription. Nature. 447:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, W. H. 2005. Autoimmune disorders result from loss of epigenetic control following chromosome damage. Med. Hypotheses. 64:590–598.

    Article  PubMed  CAS  Google Scholar 

  • Carrington, J. L. 2005. Aging bone and cartilage: cross-cutting issues. Biochem. Biophys. Res. Commun. 328:700–708.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, K. S., Hashimoto, K., Yamada, N., and Roach, H. I. 2008. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol. Int. [Epub ahead of print]:DOI 10.1007/s00296-008- 0744

    Google Scholar 

  • Chubinskaya, S., Kuettner, K. E., and Cole, A. A. 1999. Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab Invest. 79: 1669–1677.

    PubMed  CAS  Google Scholar 

  • da Silva, M. A., Yamada, N., Clarke, N. M., and Roach, H. I. 2008. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J. Orthop. Res. [E-pub ahead of print]:DOI 10.1002/jor.20799

    Google Scholar 

  • de Crombrugghe, B., Lefebvre, V., Behringer, R. R., Bi, W., Murakami, S., and Huang, W. 2000. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19:389–394.

    Article  PubMed  Google Scholar 

  • de Crombrugghe, B., Lefebvre, V., and Nakashima, K. 2001. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 13:721–727.

    Article  PubMed  Google Scholar 

  • Dessau, W., Sasse, J., Timpl, R., Jilek, F., and Von der, M. K. 1978. Synthesis and extracellular deposition of fibronectin in chondrocyte cultures. Response to the removal of extracellular cartilage matrix. J. Cell Biol. 79:342–355.

    Article  PubMed  CAS  Google Scholar 

  • Dozin, B., Malpeli, M., Camardella, L., Cancedda, R., and Pietrangelo, A. 2002. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol. 21:449–459.

    Article  PubMed  CAS  Google Scholar 

  • Duerr, S., Stremme, S., Soeder, S., Bau, B., and Aigner, T. 2004. MMP-2/gelatinase A is a gene product of human adult articular chondrocytes and is increased in osteoarthritic cartilage. Clin. Exp. Rheumatol. 22:603–608.

    PubMed  CAS  Google Scholar 

  • Dumond, H., Presle, N., Terlain, B., Mainard, D., Loeuille, D., Netter, P., and Pottie, P. 2003. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48:3118–3129.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. V., Davies, R., Down, T. A., Haefliger, C., Horton, R., Howe, K., Jackson, D. K., Kunde, J., Koenig, C., Liddle, J., Niblett, D., Otto, T., Pettett, R., Seemann, S., Thompson, C., West, T., Rogers, J., Olek, A., Berlin, K., and Beck, S. 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38:1378–1385.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto, H., Inoki, I., Komiya, K., Shiomi, T., Ikeda, E., Obata, K., Matsumoto, H., Toyama, Y., and Okada, Y. 2003. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol. 162:171–181.

    PubMed  CAS  Google Scholar 

  • Esteller, M. 2007. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16 Spec No 1:R50–R59.

    Article  PubMed  CAS  Google Scholar 

  • Fajardo, M., and Di Cesare, P. E. 2005. Disease-modifying therapies for osteoarthritis: current status. Drugs Aging. 22:141–161.

    Article  PubMed  CAS  Google Scholar 

  • Fan, Z., Soder, S., Oehler, S., Fundel, K., and Aigner, T. 2007. Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. Am. J. Pathol. 171:938–946.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature. 447: 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Freemont, A. J., Hampson, V., Tilman, R., Goupille, P., Taiwo, Y., and Hoyland, J. A. 1997. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56:542–549.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y., Tachibana, M., Chiba, T., and Nakao, M. 2003. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J. Biol. Chem. 278:24132–24138.

    Article  PubMed  CAS  Google Scholar 

  • Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P., and Kouzarides, T. 2003. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278:4035–4040.

    Article  PubMed  CAS  Google Scholar 

  • Gan, Q., Yoshida, T., McDonald, O. G., and Owens, G. K. 2007. Epigenetic Mechanisms Contribute to Pluripotency and Cell Lineage Determination of Embryonic Stem Cells. Stem Cells. 25:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, M. B. 2006. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best. Pract. Res. Clin. Rheumatol. 20:1003–1025.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, M. B. 2000. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 43: 1916–1926.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, M. B., and Goldring, S. R. 2007. Osteoarthritis. J. Cell Physiol. 213:626–634.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, S. R., and Goldring, M. B. 2004. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat Res. S27–S36.

    Google Scholar 

  • Goldring, S. R., and Goldring, M. B. 2006. Clinical aspects, pathology and pathophysiology of osteoarthritis. J. Musculoskelet. Neuronal. Interact. 6:376–378.

    PubMed  CAS  Google Scholar 

  • Guenette, D. K., Ritzenthaler, J. D., Foley, J., Jackson, J. D., and Smith, B. D. 1992. DNA methylation inhibits transcription of procollagen alpha 2(I) promoters. Biochem. J. 283:699–703.

    PubMed  CAS  Google Scholar 

  • Hauselmann, H. J., Stefanovic-Racic, M., Michel, B. A., and Evans, C. H. 1998. Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J. Immunol. 160:1444–1448.

    PubMed  CAS  Google Scholar 

  • Huhtala, P., Tuuttila, A., Chow, L. T., Lohi, J., Keski-Oja, J., and Tryggvason, K. 1991. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J. Biol. Chem. 266: 16485–16490.

    PubMed  CAS  Google Scholar 

  • Ijiri, K., Zerbini, L. F., Peng, H., Otu, H. H., Tsuchimochi, K., Otero, M., Dragomir, C., Walsh, N., Bierbaum, B. E., Mattingly, D., van, F. G., Komiya, S., Aigner, T., Libermann, T. A., and Goldring, M. B. 2008. Differential expression of GADD45beta in normal and osteoarthritic cartilage: potential role in homeostasis of articular chondrocytes. Arthritis Rheum. 58: 2075–2087.

    Article  PubMed  CAS  Google Scholar 

  • Iliopoulos, D., Malizos, K. N., and Tsezou, A. 2007. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann. Rheum. Dis. 66:1616–1621.

    Article  PubMed  CAS  Google Scholar 

  • Imai, K., Ohta, S., Matsumoto, T., Fujimoto, N., Sato, H., Seiki, M., and Okada, Y. 1997. Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage. Am. J. Pathol. 151:245–256.

    PubMed  CAS  Google Scholar 

  • Jaenisch, R., and Bird, A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl:245–254.

    Google Scholar 

  • Kim, Y. I., Logan, J. W., Mason, J. B., and Roubenoff, R. 1996. DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J. Lab Clin. Med. 128:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Leung, K. K., Ng, L. J., Ho, K. K., Tam, P. P., and Cheah, K. S. 1998. Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 gene in transgenic mice. J. Cell Biol. 141:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Da, L., Tang, H., Li, T., and Zhao, M. 2008. CpG methylation plays a vital role in determining tissue- and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res. 36:330–341.

    Article  PubMed  CAS  Google Scholar 

  • Lianxu, C., Hongti, J., and Changlong, Y. 2005. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis Cartilage 14:367–376.

    Article  PubMed  Google Scholar 

  • Loeser, R. F., Im, H. J., Richardson, B., Lu, Q., and Chubinskaya, S. 2008. Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage. Osteoarthritis Cartilage [Epub ahead of publication] DOI:10.1016/j.joca.2008.08.003.

    Google Scholar 

  • Lohmander, L. S., Englund, P. M., Dahl, L. L., and Roos, E. M. 2007. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35: 1756–1769.

    Article  PubMed  Google Scholar 

  • Loughlin, J. 2005. The genetic epidemiology of human primary osteoarthritis: current status. Expert. Rev. Mol. Med. 7:1–12.

    Article  PubMed  Google Scholar 

  • Malfait, A. M., Liu, R. Q., Ijiri, K., Komiya, S., and Tortorella, M. D. 2002. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol. Chem. 277:22201–22208.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, D. N., Singh, S. M., Archer, T. K., and Rodenhiser, D. I. 1999. Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene. 18:4108–4119.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C., and Zhang, Y. 2007. Mechanisms of epigenetic inheritance. Curr. Opin. Cell Biol. 19:266–272.

    Article  PubMed  CAS  Google Scholar 

  • Masuhara, K., Bak, L. S., Nakai, T., Sugano, N., Ochi, T., and Sasaguri, Y. 2000. Matrix metalloproteinases in patients with osteoarthritis of the hip. Int. Orthop. 24:92–96.

    Article  PubMed  CAS  Google Scholar 

  • Mehraban, F., Lark, M. W., Ahmed, F. N., Xu, F., and Moskowitz, R. W. 1998. Increased secretion and activity of matrix metalloproteinase-3 in synovial tissues and chondrocytes from experimental osteoarthritis. Osteoarthritis Cartilage 6:286–294.

    Article  PubMed  CAS  Google Scholar 

  • Milner, J. M., and Cawston, T. E. 2005. Matrix metalloproteinase knockout studies and the potential use of matrix metalloproteinase inhibitors in the rheumatic diseases. Curr. Drug Targets. Inflamm. Allergy. 4:363–375.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L., Schwartz, T. A., Helmick, C. G., Renner, J. B., Tudor, G., Koch, G., Dragomir, A., Kalsbeek, W. D., Luta, G., and Jordan, J. M. 2008. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59:1207–1213.

    Article  PubMed  Google Scholar 

  • Neuhold, L. A., Killar, L., Zhao, W., Sung, M. L., Warner, L., Kulik, J., Turner, J., Wu, W., Billinghurst, C., Meijers, T., Poole, A. R., Babij, P., and DeGennaro, L. J. 2001. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Nile, C. J., Read, R. C., Akil, M., Duff, G. W., and Wilson, A. G. 2008. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 58:2686–2693.

    Article  PubMed  Google Scholar 

  • Ohta, S., Imai, K., Yamashita, K., Matsumoto, T., Azumano, I., and Okada, Y. 1998. Expression of matrix metalloproteinase 7 (matrilysin) in human osteoarthritic cartilage. Lab Invest. 78: 79–87.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Shinmei, M., Tanaka, O., Naka, K., Kimura, A., Nakanishi, I., Bayliss, M. T., Iwata, K., and Nagase, H. 1992. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 66:680–690.

    PubMed  CAS  Google Scholar 

  • Pang, R. T., Lee, L. T., Ng, S. S., Yung, W. H., and Chow, B. K. 2004. CpG methylation and transcription factors Sp1 and Sp3 regulate the expression of the human secretin receptor gene. Mol. Endocrinol. 18:471–483.

    Article  PubMed  CAS  Google Scholar 

  • Petronis, A. 2001. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 17:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Pogribny, I. P., Pogribna, M., Christman, J. K., and James, S. J. 2000. Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res. 60:588–594.

    PubMed  CAS  Google Scholar 

  • Pöschl, E., Fidler, A., Schmidt, B., Kallipolitou, A., Schmid, E., and Aigner, T. 2005. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann. Rheum. Dis. 64:477–480.

    Article  PubMed  CAS  Google Scholar 

  • Pufe, T., Bartscher, M., Petersen, W., Tillmann, B., and Mentlein, R. 2003. Pleiotrophin, an embryonic differentiation and growth factor, is expressed in osteoarthritis. Osteoarthritis. Cartilage. 11:260–264.

    CAS  Google Scholar 

  • Reik, W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 447:425–432.

    Article  PubMed  CAS  Google Scholar 

  • Roach, H. I. 2008. Potential directions for drug development for osteoarthritis. Expert. Opin. Drug Discovery. 3:475–487.

    Article  CAS  Google Scholar 

  • Roach, H. I., Aigner, T., Soder, S., Haag, J., and Welkerling, H. 2007. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr. Drug Targets. 8:271–282.

    Article  PubMed  CAS  Google Scholar 

  • Roach, H. I., and Clarke, N. M. P. 2000. Physiological cell death of chondrocytes in vivo is not confined to apoptosis: New observations on the mammalian growth plate. J. Bone Joint Surg. [Br]. 82-B:601–613.

    Article  Google Scholar 

  • Roach, H. I., and Hashimoto, K. 2007. PCR-based methods to determine DNA methylation status at specific CpG sites using methylation-sensitive restriction enzymes. In: Methods Express: PCR, ed. S. Hughes and A. Moody, pp. 279–292. Bloxham, Oxfordshire, UK: Scion Publishing Ltd.

    Google Scholar 

  • Roach, H. I., Inglis, S., Partridge K. A., Clarke N. M. P., Oreffo R. O. C., and Bronner F. 2005a. Can changes in the DNA methylation pattern explain the clonally inherited altered phenotype of osteoarthritic chondrocytes? In: Proceedings of the 8th International Conference on the Chemistry and Biology of Mineralized Tissues, eds. W. Landis and J. Sodek, pp. 192–195. Toronto: University of Toronto.

    Google Scholar 

  • Roach, H. I., and Tilley, S. 2007. The pathogenesis of osteoarthritis. In: Bone and Osteoarthritis, Volume 4, Topics in Bone Biology, eds. F. Bronner and M. C. Farach-Carson, pp. 1–18. London: Springer Verlag

    Chapter  Google Scholar 

  • Roach, H. I., Yamada, N., Cheung, K. S., Tilley, S., Clarke, N. M., Oreffo, R. O., Kokubun, S., and Bronner, F. 2005b. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52:3110–3124.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Pernaute, O., Ospelt, C., Neidhart, M., and Gay, S. 2008. Epigenetic clues to rheumatoid arthritis. J. Autoimmun. 30:12–20.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, L. J., and Aigner, T. 2001. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3:107–113.

    Article  PubMed  CAS  Google Scholar 

  • Sandy, J. D., and Verscharen, C. 2001. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem. J. 358:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Sarzi-Puttini, P., Cimmino, M. A., Scarpa, R., Caporali, R., Parazzini, F., Zaninelli, A., Atzeni, F., and Canesi, B. 2005. Osteoarthritis: an overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 35:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Sesselmann, S., Soder, S., Voigt, R., Haag, J., Grogan, S. P., and Aigner, T. 2008. DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthritis. Cartilage [Epub ahead of print] DOI:10.1016/j.joca.2008.09.006.

    Google Scholar 

  • Shlopov, B. V., Gumanovskaya, M. L., and Hasty, K. A. 2000. Autocrine regulation of collagenase 3 (matrix metalloproteinase 13) during osteoarthritis. Arthritis Rheum. 43:195–205.

    Article  PubMed  CAS  Google Scholar 

  • Soder, S., Roach, H. I., Oehler, S., Bau, B., Haag, J., and Aigner, T. 2006. MMP-9/gelatinase B is a gene product of human adult articular chondrocytes and increased in osteoarthritic cartilage. Clin. Exp. Rheumatol. 24:302–304.

    PubMed  CAS  Google Scholar 

  • Spector, T. D., and Macgregor, A. J. 2004. Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage. 12 Suppl A:S39–S44.

    Article  PubMed  Google Scholar 

  • Stanton, H., Rogerson, F. M., East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., Little, C. B., Last, K., Farmer, P. J., Campbell, I. K., Fourie, A. M., and Fosang, A. J. 2005. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 434:648–652.

    Article  PubMed  CAS  Google Scholar 

  • Stirzaker, C., Song, J. Z., Davidson, B., and Clark, S. J. 2004. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res. 64:3871–3877.

    Article  PubMed  CAS  Google Scholar 

  • Strunnikova, M., Schagdarsurengin, U., Kehlen, A., Garbe, J. C., Stampfer, M. R., and Dammann, R. 2005. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol. Cell Biol. 25:3923–3933.

    Article  PubMed  CAS  Google Scholar 

  • Tetlow, L. C., Adlam, D. J., and Woolley, D. E. 2001. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 44:585–594.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M. D., Malfait, A. M., Deccico, C., and Arner, E. 2001. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage. 9:539–552.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, K., Maloney, W. J., Vu, T., Hoffman, A. R., Schurman, D. J., and Smith, R. L. 1996. RT-PCR analysis of MMP-9 expression in human articular cartilage chondrocytes and synovial fluid cells. Biotech. Histochem. 71:208–213.

    Article  PubMed  CAS  Google Scholar 

  • Valdes, A. M., Doherty, M., and Spector, T. D. 2008. The additive effect of individual genes in predicting risk of knee osteoarthritis. Ann. Rheum. Dis. 67:124–127.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, S., Hofstetter, W., Chiquet, M., Mainil-Varlet, P., Stauffer, E., Ganz, R., and Siebenrock, K. A. 2003. Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. Osteoarthritis Cartilage. 11:508–518.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Kawashima, A., Nebelung, W., Neumann, W., and Roessner, A. 1998. Immunohistochemical analysis of several proteolytic enzymes as parameters of cartilage degradation. Pathol. Res. Pract. 194:73–81.

    PubMed  CAS  Google Scholar 

  • Wolfe, G. C., MacNaul, K. L., Buechel, F. F., McDonnell, J., Hoerrner, L. A., Lark, M. W., Moore, V. L., and Hutchinson, N. I. 1993. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 36:1540–1547.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. W., and Kalunian, K. C. 2005. New developments in osteoarthritis. Clin. Geriatr. Med. 21:589–601.

    Article  PubMed  Google Scholar 

  • Wu, W., Billinghurst, R. C., Pidoux, I., Antoniou, J., Zukor, D., Tanzer, M., and Poole, A. R. 2002. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 46:2087–2094.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, K., Suzuki, H., Ihn, H., Kato, M., Yoshikawa, H., and Tamaki, K. 2005. Cell type-specific regulation of the TGF-beta-responsive alpha2(I) collagen gene by CpG methylation. J. Cell Physiol. 202:822–830.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, P., Boeuf, S., Dickhut, A., Boehmer, S., Olek, S., and Richter, W. 2008. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 58:2743–2753.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmtrud I. Roach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roach, H.I. (2010). DNA Methylation and Osteoarthritis. In: Tollefsbol, T. (eds) Epigenetics of Aging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0639-7_20

Download citation

Publish with us

Policies and ethics