Epigenetic Drift and Aging

  • Ester Lara*
  • Vincenzo Calvanese*
  • Mario F. Fraga


Epigenetics of aging is an emerging field that promises exciting revelations in the near future. Epigenetic pathways, including DNA methylation and histone modification, are determinants of normal development and can change during aging. Some of the epigenetic alterations described during aging, as hypermethylation at specific promoters and decrease of global DNA methylation, are also associated with tumour development. The epigenetic changes occurring during development and aging can be stochastic or depend on environmental factors. Future challenges in the field involve the determination of the precise molecular mechanisms that create age-dependent epigenetic variation and how these epigenetic changes affect the aging phenotype.


methylation histone modifications aging development 


  1. Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–9CrossRefPubMedGoogle Scholar
  2. Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE. 2002. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62:2370–7PubMedGoogle Scholar
  3. Berdyshev GD, Korotaev GK, Boyarskikh GV, Vanyushin BF. 1967. Nucleotide composition of DNA and RNA from somatic tissues of humpback salmon and its changes during spawning. Biokhimia 32Google Scholar
  4. Bestor TH. 2000. The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–402CrossRefPubMedGoogle Scholar
  5. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–4CrossRefPubMedGoogle Scholar
  6. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K. 2007. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–30CrossRefPubMedGoogle Scholar
  7. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–5CrossRefPubMedGoogle Scholar
  8. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY. 2006. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–83CrossRefPubMedGoogle Scholar
  9. Collado M, Blasco MA, Serrano M. 2007. Cellular senescence in cancer and aging. Cell 130: 223–33CrossRefPubMedGoogle Scholar
  10. Cropley JE, Suter CM, Beckman KB, Martin DI. 2006. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci USA 103:17308–12CrossRefPubMedGoogle Scholar
  11. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–9CrossRefPubMedGoogle Scholar
  12. Fraga MF, Esteller M. 2005. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4:1377–81PubMedGoogle Scholar
  13. Fraga MF, Esteller M. 2007. Epigenetics and aging: the targets and the marks. Trends Genet 23:413–8CrossRefPubMedGoogle Scholar
  14. Gartner K. 1990. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–7CrossRefPubMedGoogle Scholar
  15. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA. 2006. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–24CrossRefPubMedGoogle Scholar
  16. Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–60CrossRefPubMedGoogle Scholar
  17. Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  18. Heard E, Disteche CM. 2006. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–67CrossRefPubMedGoogle Scholar
  19. Hendrich B, Bird A. 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–47PubMedGoogle Scholar
  20. Holliday R. 2006. Epigenetics: a historical overview. Epigenetics 1:76–80CrossRefPubMedGoogle Scholar
  21. Issa JP. 2003. Age-related epigenetic changes and the immune system. Clin Immunol 109:103–8CrossRefPubMedGoogle Scholar
  22. Jones PA, Baylin SB. 2002. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–28CrossRefPubMedGoogle Scholar
  23. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G. 2008. Transient cyclical methylation of promoter DNA. Nature 452:112–5CrossRefPubMedGoogle Scholar
  24. Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T. 2008. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13:429–41CrossRefPubMedGoogle Scholar
  25. Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–3CrossRefPubMedGoogle Scholar
  26. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G. 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50CrossRefPubMedGoogle Scholar
  27. Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I. 2006. Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141B: 421–5CrossRefPubMedGoogle Scholar
  28. Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, Royer-Pokora B, Schulmann K, von Knebel-Doeberitz M, Dietmaier W, Keller G, Kerker B, Leitner G, Holinski-Feder E. 2008. Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16:804–11CrossRefPubMedGoogle Scholar
  29. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–8CrossRefPubMedGoogle Scholar
  30. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–16CrossRefPubMedGoogle Scholar
  31. Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. 2008. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 47:908–18CrossRefPubMedGoogle Scholar
  32. Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B. 2003. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA 100:1775–80CrossRefPubMedGoogle Scholar
  33. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–9CrossRefPubMedGoogle Scholar
  34. Petronis A, Gottesman, II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V. 2003. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–78PubMedGoogle Scholar
  35. Poulsen P, Esteller M, Vaag A, Fraga MF. 2007. The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61:38R–42RCrossRefPubMedGoogle Scholar
  36. Rakyan VK, Beck S. 2006. Epigenetic variation and inheritance in mammals. Curr Opin Genet Dev 16:573–7CrossRefPubMedGoogle Scholar
  37. Ronn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P, Tuomi T, Isomaa B, Groop L, Vaag A, Ling C. 2008. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 51:1159–68CrossRefPubMedGoogle Scholar
  38. Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW. 2008. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet 147B:459–62CrossRefPubMedGoogle Scholar
  39. So K, Tamura G, Honda T, Homma N, Endoh M, Togawa N, Nishizuka S, Motoyama T. 2006. Quantitative assessment of RUNX3 methylation in neoplastic and non-neoplastic gastric epithelia using a DNA microarray. Pathol Int 56:571–5CrossRefPubMedGoogle Scholar
  40. Tang WY, Ho SM. 2007. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–82CrossRefPubMedGoogle Scholar
  41. Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. 1999. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–92CrossRefPubMedGoogle Scholar
  42. Vanyushin BF, Nemirovski LE, Klimenko VV, Vasiliev VK, Belozersky AN. 1973. The 5-Methylcytosine in DNA of rats. Gerontologia 19:138–152CrossRefPubMedGoogle Scholar
  43. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD. 2008. Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–23CrossRefPubMedGoogle Scholar
  44. Waterland RA. 2006. Assessing the effects of high methionine intake on DNA methylation. J Nutr 136:1706S–1710SPubMedGoogle Scholar
  45. Whitelaw NC, Whitelaw E. 2006. How lifetimes shape epigenotype within and across generations. Hum Mol Genet 15 Spec No 2:R131–7Google Scholar
  46. Wilson VL, Jones PA. 1983. DNA methylation decreases in aging but not in immortal cells. Science 220:1055–7CrossRefPubMedGoogle Scholar
  47. Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262:9948–51PubMedGoogle Scholar
  48. Wolff GL, Kodell RL, Moore SR, Cooney CA. 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J 12:949–57PubMedGoogle Scholar
  49. Zhang AP, Yu J, Liu JX, Zhang HY, Du YY, Zhu JD, He G, Li XW, Gu NF, Feng GY, He L. 2007. The DNA methylation profile within the 5'-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 90:97–103CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ester Lara*
    • 1
  • Vincenzo Calvanese*
    • 1
  • Mario F. Fraga
    • 1
    • 2
  1. 1.Department of Immunology and OncologyNational Center for Biotechnology, CNB-CSICCantoblancoSpain
  2. 2.Laboratorio de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain

Personalised recommendations