Synapse: A Clinical Trial Examining the Impact of Actively Engaging the Aging Mind



A fundamental challenge and responsibility for modern science is to progress toward understanding neuroprotective factors that will support and optimize cognitive aging. The present chapter describes the scientifically driven efforts of our research group to this end. We do this in three ways beginning with a review of the latest findings regarding the neurocognitive declines that are part of the normal aging process. Next, we present the Scaffolding Theory of Aging and Cognition (STAC; Annu Rev Psychol 60:173–196, 2009), which describes a model for how the brain adapts to the neural deterioration that occurs as a natural part of the aging process. Finally, we introduce a program of research designed using the tenets of the STAC model to investigate how engaging in cognitively and socially stimulating activities may promote the neurocognitive health of seniors long term.


Neurocognitive Function Neurocognitive Functioning Digital Photography Mental Control Default Network 



Research supported by the National Institutes on Aging grants #R01AG026589 and 1RC1AG036003.


  1. Banich, M. T. (1998). The missing link: The role of interhemispheric interaction in attentional processing. Brain and Cognition, 36, 128–157.PubMedCrossRefGoogle Scholar
  2. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765–777.PubMedCrossRefGoogle Scholar
  3. Bennett, D. A., Wilson, R. S., Schneider, J. A., Evans, D. A., Leon, C. F. M. D., Arnold, S. E., et al. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60, 1909–1915.PubMedGoogle Scholar
  4. Boot, W., & Blakely, D. (2011). Mental and physical exercise as a means to reverse cognitive aging and enhance well-being. In P. E. Hartman-Stein & A. La Rue (Eds.), Enhancing cognitive fitness in adults: A guide for use and development of community-based programs. New York: Springer.Google Scholar
  5. Bosma, H., Boxtel, M. P. V., Ponds, R. W., Houx, P. J., Burdorf, A., & Jolles, J. (2003). Mental work demands protect against cognitive impairment: MAAS prospective cohort study. Experimental Aging Research, 29, 33–45.PubMedCrossRefGoogle Scholar
  6. Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. The Journal of Neuroscience, 28, 7031–7035.PubMedCrossRefGoogle Scholar
  7. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17, 1394–1402.PubMedCrossRefGoogle Scholar
  8. Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14, 364–375.PubMedCrossRefGoogle Scholar
  9. Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. The Journal of Neuroscience, 17, 391–400.PubMedGoogle Scholar
  10. Carlson, M. C., Erickson, K. I., Kramer, A. F., Voss, M. W., Bolea, N., Mielke, M., et al. (2009). Evidence for neurocognitive plasticity in at-risk older adults: The Experience Corps Program. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64, 1275–1282.CrossRefGoogle Scholar
  11. Cherry, B. J., Adamson, M., Duclos, A., & Hellige, J. B. (2005). Aging and individual variation in interhemispheric collaboration and hemispheric asymmetry. Aging, Neuropsychology, and Cognition, 12, 316–339.CrossRefGoogle Scholar
  12. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults. Psychological Science, 14, 125.PubMedCrossRefGoogle Scholar
  13. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.PubMedCrossRefGoogle Scholar
  14. Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., et al. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. The Journal of Neuroscience, 25, 11340–11348.PubMedCrossRefGoogle Scholar
  15. Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., et al. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012.PubMedCrossRefGoogle Scholar
  16. Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240.PubMedGoogle Scholar
  17. Grady, C. L., McIntosh, A. R., Rajah, M. N., Beig, S., & Craik, F. I. (1999). The effects of age on the neural correlates of episodic encoding. Cerebral Cortex, 9, 805–814.PubMedCrossRefGoogle Scholar
  18. Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., et al. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17, 84–96.PubMedCrossRefGoogle Scholar
  19. Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: Evidence from diffusion tensor imaging. Cerebral Cortex, 14, 410–423.PubMedCrossRefGoogle Scholar
  20. Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27, 837–847.PubMedCrossRefGoogle Scholar
  21. Hultsch, D. F., Hertzog, C., Dixon, R. A., & Small, B. J. (1999). Memory changes in the aged. Cambridge: Cambridge University Press.Google Scholar
  22. Jessberger, S., & Gage, F. H. (2008). Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychology and Aging, 23, 684–691.PubMedCrossRefGoogle Scholar
  23. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  24. Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52, 135–143.PubMedCrossRefGoogle Scholar
  25. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. The Journal of Neuroscience, 18, 3206–3212.PubMedGoogle Scholar
  26. Kobayashi, S., Ohashi, Y., & Ando, S. (2002). Effects of enriched environments with different durations and starting times on learning capacity during aging in rats assessed by a refined procedure of the Hebb-Williams maze task. Journal of Neuroscience Research, 70, 340–346.PubMedCrossRefGoogle Scholar
  27. Lodi-Smith, J., Geise, A. C., Roberts, B. W., & Robins, R. W. (2009). Narrating personality change. Journal of Personality and Social Psychology, 96, 679–689.PubMedCrossRefGoogle Scholar
  28. Lodi-Smith, J., & Roberts, B. W. (2007). Social investment and personality: A meta-analysis of the relationship of personality traits to investment in work, family, religion, and volunteerism. Personality and Social Psychology Review, 11, 68–86.PubMedCrossRefGoogle Scholar
  29. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19, 504–522.PubMedCrossRefGoogle Scholar
  30. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.PubMedCrossRefGoogle Scholar
  31. McCrae, R. R., & Costa, P. T. (1988). Age, personality, and the spontaneous self-concept. Journal of Gerontology, 43, S177–S185.PubMedGoogle Scholar
  32. Morcom, A. M., Good, C. D., Frackowiak, R. S., & Rugg, M. D. (2003). Age effects on the neural correlates of successful memory encoding. Brain: A Journal of Neurology, 126, 213–229.Google Scholar
  33. Noice, H., Noice, T., & Staines, G. (2004). A short-term intervention to enhance cognitive and affective functioning in older adults. Journal of Aging and Health, 16, 562.PubMedCrossRefGoogle Scholar
  34. Park, D. C., & Gutchess, A. H. (2005). Long-term memory and aging: A cognitive neuroscience perspective. In R. Cabeza, L. Nyberg, & D. C. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 218–245). New York: Oxford Press.Google Scholar
  35. Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17, 299–320.PubMedCrossRefGoogle Scholar
  36. Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 13091–13095.PubMedCrossRefGoogle Scholar
  37. Park, D. C., & Reuter-Lorenz, P. A. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.PubMedCrossRefGoogle Scholar
  38. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104, 5638–5643.CrossRefGoogle Scholar
  39. Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. G., Ingvar, M., et al. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16, 907–915.PubMedCrossRefGoogle Scholar
  40. Polk, T. A., & Farah, M. J. (1998). The neural development and organization of letter recognition: Evidence from functional neuroimaging, computational modeling, and behavioral studies. Proceedings of the National Academy of Sciences of the United States of America, 95, 847–852.PubMedCrossRefGoogle Scholar
  41. Polk, T. A., Stallcup, M., Aguirre, G. K., Alsop, D. C., D’Esposito, M., Detre, J. A., et al. (2002). Neural specialization for letter recognition. Journal of Cognitive Neuroscience, 14, 145–159.PubMedCrossRefGoogle Scholar
  42. Potkanowicz, E. S. (2011). The role of physical activity in cognitive fitness: a general guide for community programs. In P. E. Hartman-Stein & A. La Rue (Eds.), Enhancing cognitive fitness in adults: A guide for use and development of community-based programs. New York: Springer.Google Scholar
  43. Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letter strings, and textures: A functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 5205–5215.PubMedGoogle Scholar
  44. Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (2nd ed., pp. 1–90). New York: Psychology Press.Google Scholar
  45. Raz, N., & Kennedy, K. M. (2009). A systems approach to age-related change: Neuroanatomical changes, their modifiers, and cognitive correlates. In W. Jagust & M. D’Esposito (Eds.), Imaging the aging brain (pp. 151–268). New York: Oxford University Press.Google Scholar
  46. Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: A study of a five-year change. Neurology, 62, 433–438.PubMedGoogle Scholar
  47. Rebok, G. W., Carlson, M. C., Barron, J. S., Frick, K. D., McGill, S., & Parisi, J. M. (2011). Experience Corps®: A civic engagement-based public health intervention in the public schools. In P. E. Hartman-Stein & A. La Rue (Eds.), Enhancing cognitive fitness in adults: A guide for use and development of community-based programs. New York: Springer.Google Scholar
  48. Reuter-Lorenz, P. A., & Cappell, K. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 18, 177–182.CrossRefGoogle Scholar
  49. Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174–187.PubMedCrossRefGoogle Scholar
  50. Reuter-Lorenz, P. A., Marshuetz, C., Jonides, J., Smith, E. E., Hartley, A., & Koeppe, R. (2001). Neurocognitive ageing of storage and executive processes. The European Journal of Cognitive Psychology, 13, 257.Google Scholar
  51. Reuter-Lorenz, P. A., Stanczak, L., & Miller, A. (1999). Neural recruitment and cognitive aging: Two hemispheres are better than one especially as you age. Psychological Science, 10, 494–500.CrossRefGoogle Scholar
  52. Roberts, B. W., Wood, D., & Smith, J. L. (2005). Evaluating Five Factor Theory and social investment perspectives on personality trait development. Journal of Research in Personality, 39, 166–184.CrossRefGoogle Scholar
  53. Rypma, B., & D’Esposito, M. (2001). Age-related changes in brain–behaviour relationships: Evidence from event-related functional MRI studies. The European Journal of Cognitive Psychology, 13, 235.CrossRefGoogle Scholar
  54. Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., et al. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14, 721–730.PubMedCrossRefGoogle Scholar
  55. Schooler, C., Mulatu, M. S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14, 483–506.PubMedCrossRefGoogle Scholar
  56. Stine-Morrow, E. A. L., & Parisi, J. M. (2011). A practical guide to senior Odyssey. In P. E. Hartman-Stein & A. La Rue (Eds.), Enhancing cognitive fitness in adults: A guide for use and development of community-based programs. New York: Springer.Google Scholar
  57. Wen, W., & Sachdev, P. (2004). The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. NeuroImage, 22, 144–154.PubMedCrossRefGoogle Scholar
  58. Wilson, R. S., & Bennett, D. A. (2003). Cognitive activity and risk of Alzheimer’s disease. Current Directions in Psychological Science, 12, 87.CrossRefGoogle Scholar
  59. Wilson, R. S., Bennett, D. A., Gilley, D. W., Beckett, L. A., Barnes, L. L., & Evans, D. A. (2000). Premorbid reading activity and patterns of cognitive decline in Alzheimer disease. Archives of Neurology, 57, 1718–1723.PubMedCrossRefGoogle Scholar
  60. Zhou, X., & Merzenich, M. M. (2007). Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proceedings of the National Academy of Sciences of the United States of America, 104, 15935–15940.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyCanisius CollegeBuffaloUSA
  2. 2.Center for Vital LongevityUniversity of TexasDallasUSA

Personalised recommendations