Advertisement

Mental and Physical Exercise as a Means to Reverse Cognitive Aging and Enhance Well-Being

  • Walter R. Boot
  • Daniel P. Blakely
Chapter

Abstract

This chapter examines the current data on cognitive interventions, as well as physical fitness interventions, as means of improving cognitive functioning, including a review of the most recent behavioral and brain data. We present ­evidence that cognitive interventions involving complex video game training are especially promising. Special attention is devoted to the discussion of transfer of training from these interventions to important real-world activities performed every day. Recommendations and future directions are discussed.

Keywords

Cognitive Ability Video Game Cognitive Aging Cognitive Training Functional Independence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achtman, R. L., Green, C. S., & Bavelier, D. (2008). Video games as a tool to train visual skills. Restorative Neurology and Neuroscience, 26(4–5), 435–446.PubMedGoogle Scholar
  2. Ball, K. K., Beard, B. L., Roenker, D. L., & Miller, R. L. (1988). Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America, A, Optics, Image & Science, 5(12), 2210–∼.CrossRefGoogle Scholar
  3. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA: Journal of the American Medical Association, 288(18), 2271–2281.PubMedCrossRefGoogle Scholar
  4. Ball, K., & Owsley, C. (1991). Identifying correlates of accident involvement for the older driver. Human Factors. Special Issue: Safety and Mobility of Elderly Drivers: Part I, 33(5), 583–595.Google Scholar
  5. Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218, 697–698.PubMedCrossRefGoogle Scholar
  6. Baltes, P. B., & Kliegl, R. (1992). Further testing of limits of cognitive plasticity: Negative age differences in a mnemonic skill are robust. Developmental Psychology, 28(1), 121–125.CrossRefGoogle Scholar
  7. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777.PubMedCrossRefGoogle Scholar
  8. Becic, E., Boot, W. R., & Kramer, A. F. (2008). Training older adults to search more effectively: Scanning strategy and visual search in dynamic displays. Psychology and Aging, 23(2), 461–466.PubMedCrossRefGoogle Scholar
  9. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: Are there age-related differences in plasticity of attentional control? Psychology and Aging Special Issue: Emotion-Cognition Interactions and the Aging Mind, 20(4), 695–709.Google Scholar
  10. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.PubMedGoogle Scholar
  11. Catrambone, R., & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 1147–1156.CrossRefGoogle Scholar
  12. Charness, N. (2006). The influence of work and occupation on brain development. In P. B. Baltes, P. A. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 306–325). New York: Cambridge University Press.CrossRefGoogle Scholar
  13. Charness, N., & Boot, W. R. (2009). Aging and information technology use: Potential and barriers. Current Directions in Psychological Science, 18(5), 253–258.CrossRefGoogle Scholar
  14. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.CrossRefGoogle Scholar
  15. Cohen, J. E. (2003). Human population: the next half century. Science, 302(5648), 1172–1175.PubMedCrossRefGoogle Scholar
  16. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., et al. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journal of Gerontology: Medical Sciences, 58, 176–180.CrossRefGoogle Scholar
  17. Colcombe, S. J., Erickson, K. I., Scalf, P., Kim, J., Wadhwa, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans: Evidence from a randomized clinical trial. Journal of Gerontology: Medical Sciences, 61B, M1166–M1170.Google Scholar
  18. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130.PubMedCrossRefGoogle Scholar
  19. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, USA, 101, 3316–3321.CrossRefGoogle Scholar
  20. Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (3rd ed., pp. 1–54). New York: Psychology Press.Google Scholar
  21. Dustman, R. E., Emmerson, R. Y., Steinhaus, L. A., Shearer, D. E., & Dustman, T. J. (1992). The effects of videogame playing on neuropsychological performance of elderly individuals. Journal of Gerontology, 47, 168–171.Google Scholar
  22. Fahle, M., Edelman, S., & Poggio, T. (1995). Fast perceptual learning in hyperacuity. Vision Research, 35, 3003–3013.PubMedCrossRefGoogle Scholar
  23. Felce, D., & Perry, J. (1995). Quality of life: Its definition and measurement. Research in Developmental Disabilities, 16, 51–74.PubMedCrossRefGoogle Scholar
  24. Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial ­frequency. Nature, 287, 43–44.PubMedCrossRefGoogle Scholar
  25. Goldstein, J., Cajko, L., Oosterbroek, M., Michielsen, M., Van Houten, O., & Salvedera, F. (1997). Videogames and the elderly. Social Behavior and Personality, 25, 345–352.CrossRefGoogle Scholar
  26. Gopher, D., Weil, M., & Bareket, T. (1994). Transfer of skill from a computer game trainer to flight. Human Factors, 36(3), 387–405.Google Scholar
  27. Graves, L., Stratton, G., Ridgers, N. D., & Cable, N. T. (2007). Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: Cross sectional study. British Medical Journal, 335, 1282–1284.PubMedCrossRefGoogle Scholar
  28. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.PubMedCrossRefGoogle Scholar
  29. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94.PubMedCrossRefGoogle Scholar
  30. Green, C. S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692–701.PubMedCrossRefGoogle Scholar
  31. Hertzog, C., Cooper, B. P., & Fisk, A. D. (1996). Aging and individual differences in the development of skilled memory search performance. Psychology and Aging, 11(3), 497–520.PubMedCrossRefGoogle Scholar
  32. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development. Psychological Science in the Public Interest, 9, 1–65.Google Scholar
  33. Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245–263.PubMedCrossRefGoogle Scholar
  34. Kramer, A. F., Erickson, K. I., & McAuley, E. (2008). Effects of physical activity on cognition and brain. In D. T. Stuss, G. Winocur, & I. H. Robertson (Eds.), Cognitive Neurorehabilitation: Evidence and Applications (2nd Edition) (pp. 417–434). United Kingdom: Cambridge University Press.Google Scholar
  35. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMedCrossRefGoogle Scholar
  36. Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual task settings: A comparison of young and old adults. Journal of Experimental Psychology: Applied, 1(1), 50–76.CrossRefGoogle Scholar
  37. Lanningham-Foster, L., Jensen, T. B., Foster, R. C., Redmond, A. B., Walker, B. A., Heinz, D., et al. (2006). Energy expenditure of sedentary screen time compared with active screen time for children. Pediatrics, 118, 1831–1835.CrossRefGoogle Scholar
  38. Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.PubMedCrossRefGoogle Scholar
  39. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game playing. Nature Neuroscience, 12, 549–551.PubMedCrossRefGoogle Scholar
  40. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychological Review, 19, 504–522.CrossRefGoogle Scholar
  41. Lutz, W., Sanderson, W., & Scherbov, S. (2008). The coming acceleration of global population ageing. Nature, 451, 716–719.PubMedCrossRefGoogle Scholar
  42. Maddison, R., Mhurchu, C. N., Jull, A., Jiang, Y., Prapavessis, H., & Rodgers, A. (2007). Energy expended playing video console games: An opportunity to increase children’s physical ­activity? Pediatric Exercise Science, 19, 334–343.PubMedGoogle Scholar
  43. Mayer, R. E. (1987). The elusive search for teachable aspects of problem solving. In J. A. Glover & R. R. Ronning (Eds.), Historical Foundations of Educational Psychology (pp. 327–347). New York: Plenum Press.Google Scholar
  44. McConatha, J. T., McConatha, D., Deaner, S. L., & Dermigny, R. (1995). A computer-based intervention for the education and therapy of institutionalized older adults. Educational Gerontology, 21, 129–138.CrossRefGoogle Scholar
  45. McConatha, D., McConatha, J. T., & Dermigny, R. (1994). The use of computer services to enhance the quality of life for long term care residents. The Gerontologist, 34, 553–556.PubMedCrossRefGoogle Scholar
  46. Neider, M. B., Boot, W. R., & Kramer, A. F. (2010). Visual search for real world targets under conditions of high target–background similarity: Exploring training and transfer in younger and older adults. Acta Psychologica, 134(1), 29–39.PubMedCrossRefGoogle Scholar
  47. Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel ­exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184, 124–132.PubMedCrossRefGoogle Scholar
  48. Nintendo (2009). Financial results briefing for fiscal year ended March 2009: Supplementary Information (PDF). Retrieved June 21, 2009, from http://www.nintendo.co.jp/ir/pdf/2009/090508e.pdf#page=6.
  49. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465, 775–779.PubMedCrossRefGoogle Scholar
  50. Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320.PubMedCrossRefGoogle Scholar
  51. Park, D. C., & Reuter-Lorenz, P. A. (2009). The adaptive brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 60, 173–196.PubMedCrossRefGoogle Scholar
  52. Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in Psychology, 2, 137–168.CrossRefGoogle Scholar
  53. Pearce, C. (2008). The truth about baby boomer gamers: A study of over-forty computer game players. Games and Culture: A Journal of Interactive Media, 3(2), 142–174.Google Scholar
  54. Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (2nd ed., pp. 1–90). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  55. Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Human Factors, 45(2), 218–233.PubMedCrossRefGoogle Scholar
  56. Royall, D. R., Palmer, R., Chiodo, L. K., & Polk, M. J. (2004). Declining executive control in normal aging predicts change in functional status: The freedom house study. Journal of the American Geriatrics Society, 52(3), 346–352.PubMedCrossRefGoogle Scholar
  57. Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13(4), 140–144.CrossRefGoogle Scholar
  58. Schaie, K. W., & Willis, S. L. (1986). Can decline in adult intellectual functioning be reversed. Developmental Psychology, 22(2), 223–232.CrossRefGoogle Scholar
  59. Schooler, C., & Mulatu, M. S. (2001). The reciprocal effects of leisure time activities and intellectual functioning in older people: A longitudinal analysis. Psychology and Aging, 16(3), 466–482.PubMedCrossRefGoogle Scholar
  60. Sherer, M. (1996). The impact of using personal computers on the lives of nursing home residents. Physical & Occupational Therapy in Geriatrics, 14, 13–31.Google Scholar
  61. Shiu, L. P., & Pashler, H. (1992). Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Perception and Psychophysics, 52, 582–588.PubMedCrossRefGoogle Scholar
  62. Slegers, K., Van Boxtel, M. P. J., & Jolles, J. (2008). Effects of computer training and internet usage on the well-being and quality of life of older adults: A randomized, controlled study. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 63B(3), 176–184.Google Scholar
  63. Slegers, K., Van Boxtel, M. P. J., & Jolles, J. (2009). Effects of computer training and internet usage on cognitive abilities of older adults: A randomized controlled study. Aging, Clinical and Experimental Research, 21(1), 43–54.Google Scholar
  64. Smith, G. E., Housen, P., Yaffee, K., Ruff, R., Kennison, R. F., Mahnche, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from the Improvement in Memory with Plasticity-based Adaptive Control Training (IMPACT) study. Journal of the American Geriatrics Society., 57, 594–603.PubMedCrossRefGoogle Scholar
  65. Swaab, D. F. (1991). Brain aging and Alzheimer’s disease: ‘wear and tear’ versus ‘use it or lose it’. Neurobiology of Aging, 12, 317–324.PubMedCrossRefGoogle Scholar
  66. Thorndike, E. L. (1923). The influence of first year Latin upon the ability to read English. School Sociology, 17, 165–168.Google Scholar
  67. Thorndike, E. L., & Woodworth, R. S. (1901a). The influence of improvement in one mental function upon the efficiency of other functions I. Psychological Review, 8, 247–261.CrossRefGoogle Scholar
  68. Thorndike, E. L., & Woodworth, R. S. (1901b). The influence of improvement in one mental ­function upon the efficiency of other functions II: The estimation of magnitudes. Psychological Review, 8, 247–261.CrossRefGoogle Scholar
  69. Thorndike, E. L., & Woodworth, R. S. (1901c). The influence of improvement in one mental ­function upon the efficiency of other functions III: Functions involving attention, observation, and discrimination. Psychological Review, 8, 247–261.CrossRefGoogle Scholar
  70. van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of enrichment. Nature Reviews Neuroscience, 1, 191–198.PubMedCrossRefGoogle Scholar
  71. Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health though molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84, 699–715.PubMedCrossRefGoogle Scholar
  72. Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of ­meta-analyses. Neuroscience & Biobehavioral Reviews, 26(7), 849–857.CrossRefGoogle Scholar
  73. Willis, S. L., & Nesselroade, C. S. (1990). Long-term effects of fluid ability training in old-old age. Developmental Psychology, 26(6), 905–910.CrossRefGoogle Scholar
  74. Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., et al. (2006). ­Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA: Journal of the American Medical Association, 296(23), 2805–2814.PubMedCrossRefGoogle Scholar
  75. Wolinsky, F. D., Mahncke, H. W., Vander Weg, M. W., Martin, R., Unverzagt, F. W., Ball, K. K., et al. (2009). The ACTIVE cognitive training interventions and the onset of and recovery from suspected clinical depression. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 64B(5), 577–585.CrossRefGoogle Scholar
  76. Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., Jones, R., Stoddard, A., & Tennstedt, S. L. (2006). The ACTIVE cognitive training trial and health-related quality of life: Protection that lasts for 5 years. The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences, 61A(12), 1324–1329.Google Scholar
  77. Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., Jones, R., Wright, E., & Tennstedt, S. L. (2006). The effects of the ACTIVE cognitive training trial on clinically relevant declines in health-related quality of life. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 61B(5), S281–S287.Google Scholar
  78. Wolinsky, F. D., Weg, M. W. V., Martin, R., Unverzagt, F. W., Ball, K. K., Jones, R. N., et al. (2009). The effect of speed-of-processing training on depressive symptoms in ACTIVE. The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences, 64A(4), 468–472.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyFlorida State UniversityTallahasseeUSA

Personalised recommendations