Status and Potential Therapeutic Importance of n–3 Fatty Acids in Neurodegenerative Disease


Neurodegenerative diseases are a complex heterogeneous group of diseases associated with site-specific premature and slow death of certain neuronal populations in brain and spinal cord tissues (Graeber and Moran, 2002). For example, in Alzheimer disease (AD) neuronal degeneration occurs in the nucleus basalis, whereas in Parkinson disease (PD) neurons in the substantia nigra die. The most severely affected neurons in Huntington disease (HD) are striatal medium spiny neurons. The neuronal population that is lost in neurodegenerative diseases modulates functions such as controlling movements, processing sensory information, and making decisions. The most important risk factors for neurodegenerative diseases are old age, positive family history, unhealthy lifestyle, and exposure to toxic environment. It is suggested that during normal aging, the ability of the brain to modify its own structural organization and functioning becomes week and liable resulting in loss of some cognitive function (Farooqui and Farooqui, 2009), but neurodegenerative diseases are accompanied by dramatic impairment in ability to modulate structural organization and functioning of the brain tissue. Other risk factors such as genetic defects, abnormalities of antioxidant enzymes, excitotoxicity, cytoskeletal abnormalities, autoimmunity, mineral deficiencies, oxidative stress, metabolic toxicity, blood–brain barrier dysfunction, and hypertension may also contribute to the pathogenesis of neurodegenerative diseases (Rao and Balachandran, 2002; Farooqui, 2009)


Amyotrophic Lateral Sclerosis Neurodegenerative Disease Alzheimer Disease Caloric Restriction Parkinson Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akbar, M., and Kim, H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.PubMedCrossRefGoogle Scholar
  2. Almer G., Guegan C., Teismann P., Naini A., Rosoklija G., Hays A.P., Chen C.P., and Przedborski S. (2001). Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol. 49:176–185.PubMedCrossRefGoogle Scholar
  3. Andersen J.K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci. 10(Suppl):S18–S25.Google Scholar
  4. Anisimov V.N. (2003). Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp. Gerontol. 38:1041–1049.PubMedCrossRefGoogle Scholar
  5. Baptista M., Cookson M.R., and Miller D.W. (2004). Parkin and α-synuclein: opponent actions in the pathogenesis of Parkinson's disease. Neuroscientist 10:63–72.PubMedCrossRefGoogle Scholar
  6. Barcelo-Coblijn G., Golovko M.Y., Weinhofer I., Berger J., and Murphy E.J. (2007). Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J. Neurochem. 101:132–141.PubMedCrossRefGoogle Scholar
  7. Bartke A., Chandrashekar V., Dominici F., Turyn D., Kinney B., Steger R., and Kopchick J.J. (2003). Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4:1–8.PubMedCrossRefGoogle Scholar
  8. Bartke A., Bonkowski M., and Masternak M. (2008). Thow diet interacts with longevity genes. Hormones 7:17–23.PubMedGoogle Scholar
  9. Bazan N.G. (2005). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  10. Bazan N.G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.PubMedCrossRefGoogle Scholar
  11. Bazan N.G. (2007). Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 10:136–141.PubMedCrossRefGoogle Scholar
  12. Beal M.F. (1998). Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta. 1366:211–223.PubMedCrossRefGoogle Scholar
  13. Bi H., and Sze C.I. (2002). N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J. Neurol. Sci. 200:11–18.PubMedCrossRefGoogle Scholar
  14. Block M.L., and Hong J.-S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.PubMedCrossRefGoogle Scholar
  15. Bonifati D.M., and Kishore U. (2007). Role of complement in neurodegeneration and neuroinflammation. Mol. Immunol. 44:999–1010.PubMedCrossRefGoogle Scholar
  16. Bonilla E. (2000). Huntington disease. A review Invest. Clin. 41:117–141.Google Scholar
  17. Bousquet M., Saint-Pierre M., Julien C., Salem N. Jr., Cicchetti F., and Calon F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J. 22:1213–1225.PubMedCrossRefGoogle Scholar
  18. Brenna J.T. (2002). Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. Metab. Care 5:127–132.PubMedCrossRefGoogle Scholar
  19. Burke R.E. (2004). Recent advances in research on Parkinson disease: synuclein and parkin. Neurologist 10:75–81.PubMedCrossRefGoogle Scholar
  20. Busiguina S., Fernandes A.M., Barrios V., Clark R., Tolbert D.L. Berciano J., and Torres-Aleman I. (2000). Neurodegeneration is associated to changes in serum insulin-like growth factors Neurobiol. Dis. 7:657–665.Google Scholar
  21. Calabrese V., Boyd-Kimball D., Scapagnini G., and Butterfield D.A. (2004). Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18:245–267.PubMedGoogle Scholar
  22. Calon F., Lim G.P., Yang F.S., Morihara T., Teter B., Ubeda O., Rostaing P., Triller A., Salem N.J., Ashe K.H., Frautschy S.A., and Cole G.M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 43:633–645.PubMedCrossRefGoogle Scholar
  23. Calon F., Lim G.P., Morihara T., Yang F., Ubeda O., Salem N. Jr., Frantschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur. J. Neurosci. 22:617–626.PubMedCrossRefGoogle Scholar
  24. Calon F., and Cole G. (2007). Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot. Essent. Fatty Acids. 77:287–293.PubMedCrossRefGoogle Scholar
  25. Cansey M., Ulus I.H., Wang L., Maher T.J., and Wurtman R.J. (2008). Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson's disease. Neurosci. Res. 62:206–209.CrossRefGoogle Scholar
  26. Carro E., Trejo J.L., Busiguina S., and Torres-Aleman I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise. J. Neurosci. 21:5678–5684.PubMedGoogle Scholar
  27. Cedazo-Minguez A., Popescu B.O., Ankarcrona M., Nishimura T., and Cowburn R.F. (2002). The presenilin 1 deltaE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. J. Biol. Chem. 277:36646–36655.PubMedCrossRefGoogle Scholar
  28. Cepeda C., Ariano M.A., Calvert C.R., Flores-Hernandez J., Chandler S.H., Leavitt B.R., Hayden M.R., and Levine M.S. (2001). NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res. 66:525–539.PubMedCrossRefGoogle Scholar
  29. Chen K.M. (1995). Disappearance of ALS from Guam: implications for exogenous causes. Rinsho Shinkeigaku 35:1549–1553.PubMedGoogle Scholar
  30. Chen Y.G. (2005). Specific tau phosphorylation sites in hippocampus correlate with impairment of step-down inhibitory avoidance task in rats. Behav. Brain Res. 158:277–284.PubMedCrossRefGoogle Scholar
  31. Chu C.T., Plowey E.D., Wang Y., Patel V., and Jordan-Sciutto K.L. (2007). Location, location, location: altered transcription factor trafficking in neurodegeneration. J. Neuropatho. Exp. Neurol. 66:873–883.CrossRefGoogle Scholar
  32. Cole G.M., and Frautschy S.A. (2006). Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer's disease mouse model. Nutr. Health. 18:249–259.PubMedCrossRefGoogle Scholar
  33. Conquer J.A., Tierney M.C., Zecevic J., Bettger W.J., and Fisher R.H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids 35:1305–1312.PubMedCrossRefGoogle Scholar
  34. Cookson M.R. (2003). Parkin's substrates and the pathways leading to neuronal damage. Neuromolecular Med. 3:1–13.PubMedCrossRefGoogle Scholar
  35. Cooper J.L. (2003). Dietary lipids in the aetiology of Alzheimer's disease: implications for therapy. Drugs Aging 20:399–418.PubMedCrossRefGoogle Scholar
  36. Coppede F., Mancuso M., Siciliano G., Migliore L., and Murri L. (2006). Genes and the environment in neurodegeneration. Biosci. Rep. 26:341–367.PubMedCrossRefGoogle Scholar
  37. Corcoran J., So P.L., and Maden M. (2002). Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J. Cell Sci.115:4735–4741.PubMedCrossRefGoogle Scholar
  38. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O'Keefe J.H., and Brand-Miller J. (2005). Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354.PubMedGoogle Scholar
  39. Das V.N., and Vaddadi K.S. (2004). Essential fatty acids in Huntington's disease. Nutrition 20:942–947.PubMedCrossRefGoogle Scholar
  40. de Lau L.M.L., Bornebroek M., Witteman J.C.M., Hofman A., Koudstaal P.J., and Breteler M.M.B. (2005). Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64:2040–2045PubMedCrossRefGoogle Scholar
  41. De Vries H.E., Witte M., Hondius D., Rozemuller A.J.M., Drukarch B., Hoozemans J., and van Horssen J. (2008). Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Rad. Biol. Med. 45:1375–1383.Google Scholar
  42. de Wilde, M.C., Leenders, I., Broersen, L.M., Kuipers, A.A.M., van der Beek, E.M., and Kiliaan, A.J. (2003). The omega-3 fatty acid docosahexaenoic acid (DHA) inhibits the formation of β-amyloid in CHO7PA2 cells. 2003 Abstract Viewer/Itinerary Planner, Program No. 730.11.Google Scholar
  43. Diab A., Hussain R.Z., Love-Racke A.E., Chavis J.A., Drew P.D., and Racke M.K. (2004). Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148:116–126.PubMedCrossRefGoogle Scholar
  44. Dietrich M.O., Muller A., Bolos M., Carro E., Perry M.L., Portela L.V., Souza D.O., and Torres-Aleman I (2007). Western style diet impairs entrance of blood-borne insulin-like growth factor-1 into the brain. Neuromolecular Med. 9:324–330.PubMedCrossRefGoogle Scholar
  45. Ding O., Vaynman S., Akhavan M., Ying Z., and Gomez-Pinilla F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833.PubMedCrossRefGoogle Scholar
  46. Dishman R.K., Berthoud H.R., Booth F.W., Cotman C.W., Edgerton V.R., Fleshner M.R., Gandevia S.C., Gomez-Pinilla F., Greenwood B.N., Hillman C.H., Kramer A.F., Levin B.E., Moran T.H., Russo-Neustadt A.A., Salamone J.D., Van Hoomissen J.D., Wade C.E., York D.A., and Zigmond M.J. (2006). Neurobiology of exercise. Obesity (Silver Spring) 14:345–356.CrossRefGoogle Scholar
  47. Drachman D.B., Frank K., Dykes-Hoberg M., Teismann P., Almer G., Przedborski S., and Rothstein J.D. (2002). Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 52:771–778.PubMedCrossRefGoogle Scholar
  48. Drachman D.B., and Rothstein J.D. (2000). Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann. Neurol. 48:792–795.PubMedCrossRefGoogle Scholar
  49. Dwyer B.E., Takeda A., Zhu X.W., Perry G., and Smith M.A. (2005). Ferric cycle activity and Alzheimer disease. Curr. Neurovasc. Res. 2:261–267.PubMedCrossRefGoogle Scholar
  50. Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? J. Alzheimers Dis. 6:177–184.PubMedGoogle Scholar
  51. Farooqui A.A., and Horrocks L.A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedCrossRefGoogle Scholar
  52. Farooqui A.A., and Horrocks L.A. (1998). Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol. Neurobiol. 18:599–608.PubMedCrossRefGoogle Scholar
  53. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2003a). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B., and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids, pp. 14–29. AOCS Press, Champaign.Google Scholar
  54. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2003b). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes, pp. 335–354. Kluwer Academic/Plenum Publishers, London.CrossRefGoogle Scholar
  55. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2004a). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedCrossRefGoogle Scholar
  56. Farooqui A.A., Antony P., Ong W.Y., Horrocks L.A., and Fresyz L. (2004b). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  57. Farooqui A.A., and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedCrossRefGoogle Scholar
  58. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedCrossRefGoogle Scholar
  59. Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  60. Farooqui A.A., Horrocks L.A., and Farooqui T. (2007a). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedCrossRefGoogle Scholar
  61. Farooqui A.A., Ong W.Y., Horrocks L.A., Chen P., and Farooqui T. (2007b). Comparison of biochemical effects of statins and fish oil in brain: The battle of the titans. Brain Res. Rev. 56:443–471.PubMedCrossRefGoogle Scholar
  62. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.Google Scholar
  63. Farooqui T., and Farooqui A.A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mechanism Aging Dev. 130:203–215.Google Scholar
  64. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.CrossRefGoogle Scholar
  65. Fernandez A.M., De La Vega A.G., Planas B., and Torres-Aleman I. (1999). Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur. J. Neurosci. 11:2019–2030.PubMedCrossRefGoogle Scholar
  66. Florent, S., Malaplate-Armand, C., Youssef, I., Kriem, B., Koziel, V., Eseanye, M.C., Fifre, A., Sponne, I., Leininger-Muller, B., Olivier, J.L., Pillot, T., and Oster, T. (2006). Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-β oligomers. J. Neurochem. 96:385–395.PubMedCrossRefGoogle Scholar
  67. Fontan-Lozano A., Lopez-lluch G., Delgado-Garcia J.M., Navas P., and Carrion A.M. (2008). Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol. Neurobiol. 38:167–177.PubMedCrossRefGoogle Scholar
  68. Forman M.S., Trojanowski J.Q., and Lee V.M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10:1055–1063.PubMedCrossRefGoogle Scholar
  69. Francis P.T. (2003). Glutamatergic systems in Alzheimer's disease. Int. J. Geriatr. Psychiatry. 18(Suppl 1):S15–S21.PubMedCrossRefGoogle Scholar
  70. Freund-Levi Y., Eriksdotter-Jonhagen M., Cederholm T., Basun H., Faxen-Irving G., Garlind A., Vedin I., Vessby B., Wahlund L.O., and Palmblad J. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol. 63:1402–1408.PubMedCrossRefGoogle Scholar
  71. Gao H.M., Kotzbauer P.T., Uryu K., Leight S., Trojanoski J.O., and Lee V.M. (2008). Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. Neuroscience 28:7687–7698.PubMedCrossRefGoogle Scholar
  72. Geddes J.W., Ulas J., Brunner L.C., Choe W., and Cotman C.W. (1992). Hippocampal excitatory amino acid receptors in elderly, normal individuals and those with Alzheimer's disease: non-N-methyl-D-aspartate receptors. Neuroscience 50:23–34.PubMedCrossRefGoogle Scholar
  73. Gerster H. (1998). Can adults adequately convert α-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68:159–173.PubMedGoogle Scholar
  74. Ghosh S., Novak E.M., and Innis S.M. (2007). Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 α-linolenic acid ratios in normal, fat-fed pigs. Am. J. Physiol. Heart Circ. Physiol. 293:H2919–H2927.PubMedCrossRefGoogle Scholar
  75. Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: Current state. Curr. Pharmaceut. Design 12:3509–3519.CrossRefGoogle Scholar
  76. Golovko M.Y., Rosenberger T.A., Faergeman N.J., Feddersen S., Cole N.B., Pribill I., Berger J., Nussbaum R.L., and Murphy E.J. (2006). Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966.PubMedCrossRefGoogle Scholar
  77. Golovko M.Y., Barceló-Coblijn G., Castagnet P.I., Austin S., Combs C.K., and Murphy E.J. (2008). The role of alpha-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol. Cell Biochem. 2008 Dec 31 [Epub ahead of print].Google Scholar
  78. Goyens P.L.L., Spilker M.E., and Zock P.L., (2006). Conversion of a-linolenic acid in humans is influenced by the absolute amounts of a-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 84:44–53.PubMedGoogle Scholar
  79. Graeber M.B., and Moran L.B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.PubMedCrossRefGoogle Scholar
  80. Gralle M., and Ferreira S.T. (2007). Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog. Neurobiol. 82:11–32.PubMedCrossRefGoogle Scholar
  81. Green, K.N., Martinez-Coria, H., Khashwii, H., Hall, E.B., Yurki-Mauro, K.A., Ellis, L., and LaFerla, F.M. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci. 27:4385–4395.PubMedCrossRefGoogle Scholar
  82. Griffin M.., Sanders T.A.B., Davies I.G., Morgan L.M., Milliward D.J., Lewis F., Slaughter S., Cooper J.A., Miller G.J., and Griffin B.A. (2006). Effects of the ratio of dietary n-3 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP Study. Am. J. Clin. Nutr. 84:1290–1298.PubMedGoogle Scholar
  83. Griffin M.D. (2008). How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study. Curr. Opin. Lipidol. 19:57–62.PubMedCrossRefGoogle Scholar
  84. Guan Z.Z., Wang Y.A., Cairns N.J., Lantos P.L., Dallner G., and Sindelar P.J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.PubMedCrossRefGoogle Scholar
  85. Han X.L., Holtzman D.M., and McKeel D.W. Jr. (2001). Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77:1168–1180.PubMedCrossRefGoogle Scholar
  86. Harris W.S. (2007). Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217–223.PubMedCrossRefGoogle Scholar
  87. Harris W.S. (2008). The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87:1997S–2002S.PubMedGoogle Scholar
  88. Hashimoto M., Hossain S., Agdul H., and Shido O. (2005). Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions. Biochim. Biophys. Acta. 1738:91–98.PubMedGoogle Scholar
  89. Hashimoto M., Hossain S., Shimada T., and Shido O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid β-infused rats is associated with increased synaptosomal membrane fluidity. Clin. Exp. Pharmacol. Physiol. 33:934–939.PubMedCrossRefGoogle Scholar
  90. Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, Gamoh S, Miyazawa T, Arai H, Shimada T, and Shido O. (2008). Docosahexaenoic acid disrupts in vitro amyloid beta fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer's disease model rats. J. Neurochem.107:1634–1646.PubMedCrossRefGoogle Scholar
  91. Ikemoto A., Nitta A, Furukawa S., Ohishi M., Nakamura A., Fujii Y., Okuyama H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci. Lett. 285:99–102.PubMedCrossRefGoogle Scholar
  92. Ilieva E.V., Avala V., Jove M., Dalfo E., Cacabelos D., Povedano M., Bellmunt M.J., Ferrer I., Pamplona R., and Portero-Otin M. (2007). Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123.PubMedCrossRefGoogle Scholar
  93. Jaeger S., and Pietrzik C.U. (2008). Functional role of lipoprotein receptors in Alzheimer's disease. Curr. Alzheimer Res. 5:15–25.PubMedCrossRefGoogle Scholar
  94. Jellinger K.A. (2001). Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5:1–17.PubMedCrossRefGoogle Scholar
  95. Jenner P., and Olanow C.W. (2006). The pathogenesis of cell death in Parkinson's disease. Neurology 66(10 Suppl 4):S24–S36.PubMedGoogle Scholar
  96. Jokic N., Ling Y.T., Ward R.F., Michael-Titus A.T., Priestley J.V., Malaspina A. (2007). Retinoid receptors in chronic degeneration of the spinal cord: observations in a rat model of amyotrophic lateral sclerosis. J. Neurochem. 103:1821–1833.PubMedCrossRefGoogle Scholar
  97. Joseph, J.A., Shukitt-Hale B., and Lau F.C. (2007). Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann. N.Y. Acad. Sci. 1100:470–485.PubMedCrossRefGoogle Scholar
  98. Julien C., Berthiaume L., Hadi-Tahar A., Rajput A.H., Bedard P.J., Di Paolot T., Julian P., and Calon F. (2006).Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem. Int. 48:404–414.PubMedCrossRefGoogle Scholar
  99. Juranek I., and Bezek S. (2005). Controversy of free radical hypothesis: reactive oxygen species – cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.PubMedGoogle Scholar
  100. Kalmijn S., van Boxtel M.P.J., Ocke M., Verschuren W.M.M., Kromhout D., and Launer L.J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280.PubMedGoogle Scholar
  101. Kang J.X., and Weylandt K.H. (2008). Modulation of inflammatory cytokines by omega-3 Fatty acids. Subcell. Biochem. 49:133–143.PubMedCrossRefGoogle Scholar
  102. Kidd P.M. (2005). Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern. Med. Rev. 10:268–293.PubMedGoogle Scholar
  103. Kim J.J., and Yoon K.S. (1998). Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21:505–509.PubMedCrossRefGoogle Scholar
  104. Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., and Shimizu N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392:605–608.PubMedCrossRefGoogle Scholar
  105. Kitada T., Asakawa S., Minoshima S., Mizuno Y., and Shimizu N. (2000). Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm. Genome. 11:417–421.PubMedCrossRefGoogle Scholar
  106. Kriem B., Sponne I., Fifre A., Malaplate-Armand C., Lozac’h-Pillot K., Koziel V., Yen-Potin F.T., Bihain B., Oster T., Olivier J.L., and Pillot T. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J. 19:85–87.PubMedGoogle Scholar
  107. Kumar B., Nahreini P., Hanson A.J., Andreatta C., Prasad J.E., and Prasad K.N. (2005). Selenomethionine prevents degeneration induced by overexpression of wild-type human alpha-synuclein during differentiation of neuroblastoma cells. J. Am. Coll. Nutr. 24:516–523.PubMedGoogle Scholar
  108. Lau F.C., Shukitt-Hale B., and Joseph J.A. (2007). Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell. Biochem. 42:299–318.PubMedCrossRefGoogle Scholar
  109. Lee J., Duan W., Long J.M., Ingram D.K., and Mattson M.P. (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci. 15:99–108.PubMedCrossRefGoogle Scholar
  110. Lee H., Ogewa O., Zhu X.W., O’Neill M.J., Petersen R.B., Castellani R.J., Ghanbari H., Perry G., and Smith M.A. (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathol. 107:365–371.PubMedCrossRefGoogle Scholar
  111. Levy-Lahad E., Tsuang D., and Bird T.D. (1998). Recent advances in the genetics of Alzheimer's disease. J. Geriatr. Psychitry Neurol. 11:42–54.Google Scholar
  112. Liu R., Li B., Flanagan S.W., Oberley L.W., Gozal D., and Oiu M. (2002). Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J. Neurochem. 80:488–500.PubMedCrossRefGoogle Scholar
  113. Lim, G.P., Calon F., Morihara T., Yang F., Teter B., Ubeda O., Salem N. Jr., Frautschy S.A., and Cole G.M. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25:3032–3040.PubMedCrossRefGoogle Scholar
  114. Liu L., Wang Y., Lam K.S., and Xu A. (2008). Moderate wine consumption in the prevention of metabolic syndrome and its related medical complications. Edocr. Metab. Immune Disord. Drug Targets 8:89–98.CrossRefGoogle Scholar
  115. Logroscino G. (2005). The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ. Health Perspect. 113:1234–1238.PubMedCrossRefGoogle Scholar
  116. Lopez-Miranda J., Delgado-Lista J., Perez-Martinez P., Jimenez-Gómez Y., Fuentes F., Ruano J., and Marin C. (2007). Olive oil and the haemostatic system. Mol. Nutr. Food Res. 51:1249–1259.PubMedGoogle Scholar
  117. Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M., Botkjaer A., Gotlinger K., Serhan C.N., and Bazan N.G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115:2774–2783.PubMedCrossRefGoogle Scholar
  118. Lukiw W.J., and Bazan N.G. (2008). Docosahexaenoic acid and the aging brain. J. Nutr. 138:2510–2514.PubMedCrossRefGoogle Scholar
  119. Lynch D., Wanglund C., Spathis R., Chan C.W., Reiff D.M., Lum J.K., and Garruto R.M. (2008). The contribution of mitochondrial dysfunction to a gene-environment model of Guamanian ALS and PD. Mitochondrion 8:109–116.PubMedCrossRefGoogle Scholar
  120. Ma O.L., Teter B., Ubeda O.J., Morihara T., Dhoot D., Nyby M.D., Tick M., Frautschy S.A., and Cole G.M. (2007a). Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention. J. Neurosci. 27:14299–14307.PubMedCrossRefGoogle Scholar
  121. Ma O.L., Harris-White M.E., Ubeda O.J., Simmons M., Beech W., Lim G.P., Teter B., Frauchy S.A., and Cole G.M. (2007b). Evidence of Aβ- and transgene-dependent defects in ERK-CREB signaling in Alzheimer's models. J. Neurochem. 103:1594–1607.PubMedCrossRefGoogle Scholar
  122. Maccioni R.S., Minoz J.P., and Barbeito L., (2001). The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch. Med. Res. 32:367–381.PubMedCrossRefGoogle Scholar
  123. Maclean C.H., Issa A.M., Newberry S.J., Mojica W.A., Morton S.C., Garland R.H., Hilton L.G., Traina S.B., and Shekelle P.G. (2005). Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases. Evid. Rep. Technol. Assess. (Summer) 114:1–3.Google Scholar
  124. Malaspina A., and de Belleroche J. (2004). Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. Brain Res. Brain Res. Rev. 45:213–229.PubMedCrossRefGoogle Scholar
  125. Malaspina A., and Turkheimer F. (2007). A review of the functional role and of the expression profile of retinoid signaling and of nuclear receptors in human spinal cord. Brain Res. Bull. 71:437–446.PubMedCrossRefGoogle Scholar
  126. Mattson M.P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J. Neurovirol. 8:539–550.PubMedCrossRefGoogle Scholar
  127. Mattson M.P. (2008). Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit. Rev. Toxicol. 38:633–639.PubMedCrossRefGoogle Scholar
  128. Ménard C., Patenaude C., Gagné A.M., and Massicotte G. (2008). AMPA receptor-mediated cell death is reduced by docosahexaenoic acid but not by eicosapentaenoic acid in area CA1 of hippocampal slice cultures. J. Neurosci. Res. 2008 Oct 24 [Epub ahead of print].Google Scholar
  129. Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., and Murri L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol. Aging 26:587–595.PubMedCrossRefGoogle Scholar
  130. Miller D.B., and O’Callaghan J.P. (2008). Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism 57(Suppl. 2):S44–S49.PubMedCrossRefGoogle Scholar
  131. Moore D.J., West A.B., Dawson V.L., and Dawson T.M. (2005). Molecular pathophysiology of Parkinson's disease. Ann. Rev. Neurosci. 28:57–87.PubMedCrossRefGoogle Scholar
  132. Morris M.C., Evans D.A., Bienias J.L., Tangney C.C., Bennett D.A., Wilson R.S., Aggarwal N., and Schneider J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 60:940–946.PubMedCrossRefGoogle Scholar
  133. Moyad M.A. (2005). An introduction to dietary/supplemental omega-3 fatty acids for general health and prevention: part I. Urol. Oncol. 23:28–35.PubMedCrossRefGoogle Scholar
  134. Mukherjee P.K., Chawla A., Loayza M.S., and Bazan N.G. (2007). Docosanoids are multifunctional regulators of neural cell integrity and fate: significance in aging and disease. Protaglandin Leukot. Essent. Fatty Acids 77:233–238.CrossRefGoogle Scholar
  135. Murck H., and Manku M. (2007). Ethyl-EPA in Huntington disease: potentially relevant mechanism of action. Brain Res Bull. 72:159–164.PubMedCrossRefGoogle Scholar
  136. Nunomura A., Moreira P.I., Lee H.G., Zhu X., Castellani R.J., Smith M.A., and Perry G. (2007). Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets. 6:411–423.PubMedCrossRefGoogle Scholar
  137. Octave J.N. (2005). Alzheimer disease: cellular and molecular aspects. Bull. Mem. Acad. R. Med. Belg. 160:445–449.PubMedGoogle Scholar
  138. Okajima K., and Harada N. (2008). Promotion of insulin-like growth factor-I production by sensory neuron stimulation; molecular mechanism(s) and therapeutic implications. Curr. Med. Chem.15:3095–3112.PubMedCrossRefGoogle Scholar
  139. Oksman M., Iivonen H., Hogyes E., Amtul Z., Penke B., Leeders I., Broersen L., Lutjohann D., Hartmann T., and Tanila H. (2006). Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis. 23:563–572.PubMedCrossRefGoogle Scholar
  140. Papadopoulos D., Ewans L., Pham-Dinh D., Knott J., and Reynolds R. (2006). Upregulation of α-synuclein in neurons and glia in inflammatory demyelinating disease. Mol. Cell. Neurosci. 31:597–612.PubMedCrossRefGoogle Scholar
  141. Pelleymounter M.A., Cullen M.J., Baker M.B., Gollub M., and Wellman C. (1996). The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. Mol Chem. Neuropathol. 29:211–226.PubMedCrossRefGoogle Scholar
  142. Petot G.J., and Friedland R.P. (2004). Lipids, diet and Alzheimer disease: an extended summary. J. Neurol. Sci. 226:31–33.PubMedCrossRefGoogle Scholar
  143. Plourde M., Fortier M., Vandal M., Tremblay-Mercier J., Freemantle E., Bégin M., Pifferi F., and Cunnane S.C. (2007). Unresolved issues in the link between docosahexaenoic acid and Alzheimer's disease. Prostaglandins Leukot Essent Fatty Acids 77:301–308.PubMedCrossRefGoogle Scholar
  144. Popescu B.O., Cedazo-Minguez A., Benedikz E., Nishimura T., Winblad B., Ankarcrona M., and Cowburn R.F. (2004). Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction. J. Biol. Chem. 279:6455–6464.PubMedCrossRefGoogle Scholar
  145. Priller C., Dewachter I., Vassallo N., Paluch S., Pace C., Kretzschmar H.A., van Leuven F., and Herms J. (2007). Mutant presenilin 1 alters synaptic transmission in cultured hippocampal neurons. J. Biol. Chem. 282:1119–1127.PubMedCrossRefGoogle Scholar
  146. Puri B.K. (2005). Treatment of Huntington's disease with eicosapentaenoic acid. In: Yehuda S., and Mostofsky D.I. (eds.), Nutrients, Stress and Medical Disorders. Nutrition and Health (Series), pp. 279–286, Humana Press Inc, Totowa.Google Scholar
  147. Puskas L.G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.PubMedCrossRefGoogle Scholar
  148. Ramsey C.P., Glass C.A., Montgomery M.B., Lindl K.A., Ritson G.P., Chia L.A., Hamilton R.L., Chu C.T., and Jordan-Sciutto K.L. (2007). J. Neuropath. Exp. Neurol. 66:75–85.PubMedCrossRefGoogle Scholar
  149. Rao A.V., and Balachandran B. (2002). Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci. 5:291–309.PubMedCrossRefGoogle Scholar
  150. Rao S.D., and Weiss J.H. (2004). Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 27:17–23.PubMedCrossRefGoogle Scholar
  151. Roberts C.K., Barnard R.J., Sindhu R.K., Jurczak M., Ehdaie A., and Vaziri N.D. (2006). Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55:928–934.PubMedCrossRefGoogle Scholar
  152. Robson L.G., Dyalls S., Sidloff D., and Michael-Titus A.T. (2008). Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol. Aging 2008 July 10 [Epub ahead of print].Google Scholar
  153. Rogaeva E., Meng Y., Lee J.H., Gu Y., Kawarai T., Zou F., Katayama T., Baldwin C.T., Cheng R., Hasegawa H., Chen F., Shibata N., Lunetta K.L., Pardossi-Piquard R., Bohm C., Wakutani Y., Cupples L.A., Cuenco K.T., Green R.C., Pinessi L., Rainero I., Sorbi S., Bruni A., Duara R., Friedland R.P., Inzelberg R., Hampe W., Bujo H., Song Y.Q., Andersen O.M., Willnow T.E., Graff-Radford N., Petersen R.C., Dickson D., Der S.D., Fraser P.E., Schmitt-Ulms G., Younkin S., Mayeux R., Farrer L.A., and St. George-Hyslop P. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39:168–177.PubMedCrossRefGoogle Scholar
  154. Russo C., Venezia V., Repetto E., Nizzari M., Violani E., Carlo P., and Schettini G. (2005). The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. Brain Res. Brain Res. Rev. 48:257–264.PubMedCrossRefGoogle Scholar
  155. Samadi P., Gregoire L., Rouillard C., Bedard P.J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282–288.PubMedCrossRefGoogle Scholar
  156. Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S., Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W.F., and Wolf P.A. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol. 63:1545–1550.PubMedCrossRefGoogle Scholar
  157. Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G.P., Davies S.W., Lehrach H., and Wanker E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558.PubMedCrossRefGoogle Scholar
  158. Schneider J.C., Gonczi H., and Decamp E. (2003). Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Res. 990:38–44.PubMedCrossRefGoogle Scholar
  159. Selkoe D.J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81:741–766.PubMedGoogle Scholar
  160. Serhan C.N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedCrossRefGoogle Scholar
  161. Shaw P.J., and Ince P.G. (1997). Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J. Neurol. 244(Suppl 2):S3–S14.PubMedCrossRefGoogle Scholar
  162. Shen W.H., Zhang C.Y., and Zhang G.Y. (2003). Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol. Sin. 24:1125–1130.PubMedGoogle Scholar
  163. Shibata N., and Kobayashi M. (2008). The role for oxidative stress in neurodegenerative diseases. Brain Nerve 60:157–170.PubMedGoogle Scholar
  164. Shie F.S., and Ling, Z.D. (2007). Therapeutic strategy at the crossroad of neuroinflammation and oxidative stress in age-related neurodegenerative diseases. Expert. Opin. Ther. Patents 17:419–428.CrossRefGoogle Scholar
  165. Shimohama S., Ninomiya H., Saitoh T., Terry R.D., Fukunaga R., Taniguchi T., Fujiwara M., Kimura J., and Kameyama (1990). Changes in signal transduction in Alzheimer's disease. J. Neural Transm. Suppl. 30:69–78.PubMedGoogle Scholar
  166. Siman R., and Salidas S. (2004). γ-secretase subunit composition and distribution in the presenilin wild-type and mutant mouse brain. Neuroscience 129:615–628.PubMedCrossRefGoogle Scholar
  167. Simopoulos A.P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56 365–379.PubMedCrossRefGoogle Scholar
  168. Simopoulos A.P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37 263–277.PubMedCrossRefGoogle Scholar
  169. Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.PubMedCrossRefGoogle Scholar
  170. Singer P., Shapiro H., Theilla M., Anbar R., Singer J., and Cohen J. (2008). Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive. Care Med. 34:1580–1592.PubMedCrossRefGoogle Scholar
  171. Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26:421–425.PubMedCrossRefGoogle Scholar
  172. Söderberg M., Edlund C., Kristensson K., and Dallner G. (1990). Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54:415–423.PubMedCrossRefGoogle Scholar
  173. Sofi F., Cesari F., Abbate R., Gensini G.F., and Casini A. (2008). Adherence to Mediterranean diet and health status: meta-analysis. Br. Med. J. 337:a1334.Google Scholar
  174. Son T.G., Camandola S., and Mattson M. (2008). Hormetic Dietary Phytochemicals. NeuroMol. Med. 2008 June 10 [Epub ahead of print].Google Scholar
  175. Spoelgen R., von Arnim C.A., Thomas A.V., Peltan I.D., Koker M., Deng A., Irizarry M.C., Andersen O.M., Willnow T.E., and Hyman B.T. (2006). Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J. Neurosci. 26:418–428.PubMedCrossRefGoogle Scholar
  176. Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., and de la Monte S.M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? J. Alzheimers Dis. 7:63–80.PubMedGoogle Scholar
  177. Sun L., Liu S.Y., Zhou X.W., Wang X.C., Liu R., Wang Q., and Wang J.Z. (2003). Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience 118:1175–1182.PubMedCrossRefGoogle Scholar
  178. Sun G.Y., Horrocks L.A., and Farooqui A.A. (2007). The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103:1–16.PubMedCrossRefGoogle Scholar
  179. Suzuki H., Morikawa Y., and Takahashi H. (2001). Effect of DHA oil supplementation on intelligence and visual acuity in the elderly. World Rev. Nut. Diet. 88:68–71.CrossRefGoogle Scholar
  180. Tan D.X., Manchester L.C., Sainz R., Mayo J.C., Alvares F.L., and Reiter R.J. (2003). Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin. Ther. Patents 13:1513–1543.CrossRefGoogle Scholar
  181. Tehranian R., Montoya S.E., Van Laar A.D., Hastings T.G., and Perez R.G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J. Neurochem. 99:1188–1196.PubMedCrossRefGoogle Scholar
  182. Teismann P., Vila M., Choi D.K., Tieu K., Wu D.C., Jackson-Lewis V., and Przedborski S. (2003). COX-2 and neurodegeneration in Parkinson's disease. Ann. N.Y. Acad. Sci. 991:272–277.PubMedCrossRefGoogle Scholar
  183. Trejo J.L., Carro E., Nunez A., and Torres-Aleman I (2002). Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev. Neurosci. 13:365–374.PubMedCrossRefGoogle Scholar
  184. Tully A.M., Roche H.M., Doyle R., Fallon C., Bruce I., Lawlor B., Coakley D., and Gibney M.J. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case-control study. Br. J. Nutr. 89:483–489.PubMedCrossRefGoogle Scholar
  185. Turner P.R., O’connor K., Tate W.P., and Abraham W.C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70:1–32.PubMedCrossRefGoogle Scholar
  186. Urano Y., Hayashi I., Isoo N., Reid P.C., Shibasaki Y., Noguchi N., Tomita T., Iwatsubo T., Hamakubo T., and Kodama T. (2005). Association of active γ-secretase complex with lipid rafts. J. Lipid Res. 46:904–912.PubMedCrossRefGoogle Scholar
  187. Varela-Nieto I., de la Rosa E.J., Valenciano A.I., and Leon Y. (2003). Cell death in the nervous system: lessons from insulin and insulin-like growth factors. Mol. Neurobiol. 28:23–50.PubMedCrossRefGoogle Scholar
  188. Vaynman S., Ying Z., and Gomez-Pinilla F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20:2580–2590.PubMedCrossRefGoogle Scholar
  189. Vaynman S., and Gomez-Pinilla F. (2006). Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J. Neurosci. Res. 84:699–715.PubMedCrossRefGoogle Scholar
  190. Vaynman S., Ying Z., Wu A., and Gomez-Pinilla F. (2006). Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 139:1221–1234.PubMedCrossRefGoogle Scholar
  191. Vedin I., Cederholm T., Freund Levi Y., Basun H., Garlind A., Faxen Irving G., Jonhagen M.E., Vessby B., Wahlund L., and Palmblad J. (2008). Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am. J. Clin. Nutr. 87:1616–1622.PubMedGoogle Scholar
  192. Venezia V., Russo C., Repetto E., Salis S., Dolcini V., Genova F., Nizzari M., Mueller U., and Schettini G. (2004). Apoptotic cell death influences the signaling activity of the amyloid precursor protein through ShcA and Grb2 adaptor proteins in neuroblastoma SH-SY5Y cells. J. Neurochem. 90:1359–1370.PubMedCrossRefGoogle Scholar
  193. Wang J.Y., Wen L.L., Huang Y.N., Chen Y.T., and Ku M.C. (2006). Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.CrossRefGoogle Scholar
  194. Wells K., Farooqui A.A., Liss L., and Horrocks L.A. (1995). Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.PubMedCrossRefGoogle Scholar
  195. Wenk G.L., Parsons C.G., and Danysz W. (2006). Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav. Pharmacol. 17:411–424.PubMedCrossRefGoogle Scholar
  196. Wilde G.J.C., Pringle A.K., Wright P., and Iannotti F. (1997). Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J. Neurochem. 69:883–886.PubMedCrossRefGoogle Scholar
  197. Wishart T.M., Parson S.H., and Gillingwater T.H. (2006). Synaptic vulnerability in neurodegenerative disease. J. Neuropathol. Exp. Neurol. 65:733–739.PubMedCrossRefGoogle Scholar
  198. Yamato M., Shiba T., Yoshida M., Ide T., Seri N., Kudou W., Kinugawa S., and Tsutsui H. (2007). Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J. 274:3855–3863.PubMedCrossRefGoogle Scholar
  199. Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.PubMedCrossRefGoogle Scholar
  200. Yasojima K., Tourtellotte W.W., McGeer E.G., and McGeer P.L. (2001). Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956.PubMedGoogle Scholar
  201. Zhu M., Qin Z., Hu D., Munishkina L.A., and Fink A. L (2006). α-Synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. J. Mol. Biol. 45:8135–8142.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations