Status of Docosahexaenoic Acid Levels in Aging and Consequences of Docosahexaenoic Acid Deficiency in Normal Brain


Agingis defined as a time-dependent progressive functional impairment process that leads to mortality. The most prominent characteristics of aging include the progressive loss of physiological capability, decrease in ability to respond adaptively to environmental stimuli, increased susceptibility to diseases, and increased mortality. These changes are translated into decrements in neuronal functioning accompanied by behavioral declines, such as decreases in motor and cognitive performance, in both humans and animals (Joseph et al., 2005). Thus, biological aging is a progressive, endogenous, irreversible, and deleterious and highly conserved process that can be modulated by diet, environment, and genes (Spindler 2005; Spindler and Dhahbi, 2007). Many theories have been advanced to explain aging, but the biological mechanisms that underlie aging are still unknown. Major theories of aging include increase in free radical-mediated oxidative stress and changes in gene expression (Harman, 1981; Helfand and Rogina, 2000; Hulbert et al., 2007).


Growth Cone SAMP8 Mouse Collective Evidence Morris Water Maze Task Neural Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad A., Moriguchi T., and Salem N. (2002a). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26:210–218.PubMedCrossRefGoogle Scholar
  2. Ahmad A., Murthy M., Greiner R.S., Moriguchi T., and Salem N. (2002b). A decrease in cell size accompanies a loss of docosahexaenoate in the rat hippocampus. Nutr. Neurosci. 5:103–113.PubMedCrossRefGoogle Scholar
  3. Aids S., Vancassel S., Poumes-Ballihaut C., Chalon S., Guesnet P., and Lavialle (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J. Lipid Res. 44:1545–1551.CrossRefGoogle Scholar
  4. Aids S., Vancassel S., Linard A., Lavialle M., and Guesnet P. (2005). Dietary docosahexaenoic acid [22:6(n-3)] as a phospholipid or a triglyceride enhances the potassium choloride-evoked release of acetylcholine in rat hippocampus. J. Nutr. 135:1008–1013.Google Scholar
  5. Akbar M., Calderon F., Wen Z., and Kim H.Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.PubMedCrossRefGoogle Scholar
  6. An X., Guo X., Gratzer W., and Mohandas N. (2004). Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem. Biophys. Res. Commun. 327:794–800.CrossRefGoogle Scholar
  7. An X., Guo X., Sum H., Morrow J., Gratzer W., and Mohandas N. (2005). Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43:310–315.CrossRefGoogle Scholar
  8. André A., Juanéda P., Sébédio J.L., and Chardigny J.M. (2005). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens. Lipids 40:799–806.PubMedCrossRefGoogle Scholar
  9. André A., Juanéda P., Sébédio J.L., and Chardigny J.M. (2006a). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.PubMedCrossRefGoogle Scholar
  10. André A., Chanseaume E., Dumucois C., Cabaret S., Berdeaux O., and Chardigny J.M. (2006b). Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: a comparison between weaned, adult and aged mice. Brain Res. 1085:28–32.PubMedCrossRefGoogle Scholar
  11. Armitage J.A., Pearce A.D., Sinclair A.J., Vingrys A.J., Weisinger R.S., Weisinger H.S. (2003). Increased blood pressure later in life may be associated with perinatal n-3 fatty deficiency. Lipids 38:459–464.PubMedCrossRefGoogle Scholar
  12. Auestad N., and Innis S.M. (2000). Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids. Am. J. Clin. Nutr. 71(1 Suppl):312S–314S.PubMedGoogle Scholar
  13. Balasubramanian K., and Schroit A.J. (2003). Aminophospholipid asymmetry: a matter of life and death. Annu. Rev. Physiol. 65:701–734.PubMedCrossRefGoogle Scholar
  14. Bazan N.G., Reddy T.S., Bazan, H.E.P., and Birkle D.L. (1986). Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog. Lipid Res. 25:595–606.PubMedCrossRefGoogle Scholar
  15. Berry C.B., Hayes D., Murphy A., Wiessner M., Rayen T., and Mcbean G.J. (2005). Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037:123–133.PubMedCrossRefGoogle Scholar
  16. Buratta S., Mambrini R., Miniaci M.C., Tempia F., and Mozzi R. (2004). Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J. Neurochem. 89:730–738.PubMedCrossRefGoogle Scholar
  17. Calon F., Lim G.P., Morihara T., Yang F.S., Ubeda O., Salem N.J., Frautschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur. J. Neurosci. 22:617–626.PubMedCrossRefGoogle Scholar
  18. Casamenti F., Csali C., and Pepeu G. (1991). Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study. Eur. J. Pharmacol. 194:11–16.PubMedCrossRefGoogle Scholar
  19. Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75:259–269.CrossRefGoogle Scholar
  20. Chung W.L., Chen J.J., and Su H.M. (2008). Fish oil supplementation of control and n-3 fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J. Nutr. 138:1165–1171.PubMedGoogle Scholar
  21. Church M.W., Jen K.L., Dowhan L.M., Adams B.R., and Hotra J.W. (2008). Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol. Teratol. 30:107–117.Google Scholar
  22. Church M.W., Jen K.L., Jackson D.A., Adams B.R., and Hotra J.W. (2009). Abnormal neurological responses in young adult offspring caused by excess omega-3 fatty acid (fish oil) consumption by the mother during pregnancy and lactation. Neurotoxicol. Teratol. 31:26–33.PubMedCrossRefGoogle Scholar
  23. Clandinin M.T., Chappell J.E., Leong S., Heim T., Swyer P.R., and Chance G.W. (1980). Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 4:121–129.PubMedCrossRefGoogle Scholar
  24. Clandinin M.T. (1995). Infant nutrition: effects of lipid on later life. Curr. Opin. Lipidol. 6:28–31PubMedCrossRefGoogle Scholar
  25. Cohen A.A., and Muller W.E. (1992). Age-related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Res. 584:174–180.PubMedCrossRefGoogle Scholar
  26. Conde, J.R., and Streit, W.J., 2006. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65:199–203.PubMedGoogle Scholar
  27. Cui, L., Hofer, T., Rani, A., Leeuwenburgh, C., and Foster, T.C. (2007). Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol. Aging. 30:903–909.Google Scholar
  28. De Simone R., Ajmone-Cat M.A., and Minghetti L. (2004). Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol. Neurobiol. 29:197–212.PubMedCrossRefGoogle Scholar
  29. de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., and Perlmann T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.PubMedCrossRefGoogle Scholar
  30. Dyall B.C., Michael G.J., Whelpton R., Scott A.G., and Michael-Titus A.T. (2007). Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol. Aging 28:424–439.PubMedCrossRefGoogle Scholar
  31. Engler M.B., and Engler M.M. (2000). Docosahexaenoic acid – induced vasorelaxation in hypertensive rats: mechanisms of action. Biol. Res. Nurs. 2:85–95.PubMedCrossRefGoogle Scholar
  32. Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., and Henson P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207–2216.PubMedGoogle Scholar
  33. Farooqui A.A., and Horrocks L.A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  34. Farooqui A.A., Antony P., Ong W.Y., Horrocks L.A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  35. Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in Brain. Springer, New York.CrossRefGoogle Scholar
  36. Farooqui A.A., Farooqui T., and Horrocks L.A. (2008). Metabolism and functions of bioactive ether lipids in brain. Springer, New York.CrossRefGoogle Scholar
  37. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.CrossRefGoogle Scholar
  38. Farooqui T., and Farooqui A.A. (2009). Aging: An important factor for the pathogenesis of neurodegenerative Diseases. Mechanism Aging Dev. 130:203–215.Google Scholar
  39. Favrelière S., Stadelmann-Ingrand S., Huguet F., De Javel D., Piriou A., Tallineau C., and Durand G. (2000). Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol. Aging 21:653–660.CrossRefGoogle Scholar
  40. Finch C.E., and Cohen D.M. (1997). Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp. Neurol. 143:82–102.PubMedCrossRefGoogle Scholar
  41. Gagne J., Giguere C., Tocco G., Ohayon M., Thompson R.F., Baudry M., and Massicotte G. (1996). Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res. 740:337–345.PubMedCrossRefGoogle Scholar
  42. Garcia M.C., and Kim H.Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768:43–48.PubMedCrossRefGoogle Scholar
  43. Garcia M.C. Ward G., Ma Y.C., Salem N. Jr., and Kim H.Y. (1998). Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J. Neurochem. 70:24–30.PubMedCrossRefGoogle Scholar
  44. Ghosh S., Strum J.C., Sciorra V.A., Danial L., and Bell R.M. (1996). Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem. 271:8472–8480.PubMedCrossRefGoogle Scholar
  45. Giusto, N.M., Roque, M.E., and Ilincheta de Boschero, M.G. (1992). Effects of aging on the content, composition and synthesis of sphingomyelin in the central nervous system. Lipids 27:835–839.PubMedCrossRefGoogle Scholar
  46. Giusto N.M., Salvador G.A., Castagnet P.I., Pasquare S.J., and Ilincheta de Boschero M.G. (2002). Age-associated changes in central nervous system glycerolipid composition and metabolism. Neurochem Res. 27:1513–1523.PubMedCrossRefGoogle Scholar
  47. Green P., and Yavin P. (1995). Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyl docosahexaenoate administration. J. Neurochem. 65:2555–2560.PubMedCrossRefGoogle Scholar
  48. Green P., and Yavin P. (1996). Fatty acid composition of late embryonic and early postnatal rat brain. Lipids. 31:859–865.PubMedCrossRefGoogle Scholar
  49. Green P., and Yavin P. (1998). Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 52:129–136.PubMedCrossRefGoogle Scholar
  50. Greiner R.S., Moriguchi T., Hutton A., Slotnick B.M., and Salem N. Jr. (1999). Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34(Suppl):S239–S243.Google Scholar
  51. Guizy M., David M., Arias C., Zhang L., Cofan M., Ruiz-Gutierrez V., Ros E., Lillo M.P., Martens J.R., and Valenzuela C. (2008). Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. J. Mol. Cell. Cardiol. 44:323–335.PubMedCrossRefGoogle Scholar
  52. Guo, M., and Stockert, L., Akbar, M., and Kim, H.Y. (2007). Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J. Mol. Neurosci. 33: 67–73.PubMedCrossRefGoogle Scholar
  53. Gustincich S., Vatta P., Goruppi S., Wolf M., Saccone S., Della Valle G., Baggiilini M., and Schneider C. (1999). The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57:120–129.PubMedCrossRefGoogle Scholar
  54. Hamilton L., Greiner R., Salem N. Jr., and Kim H.Y. (2000). n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.PubMedCrossRefGoogle Scholar
  55. Harman D. (1981). The aging process. Proc. Natl. Acad. Sci. USA 78:7124–7128.PubMedCrossRefGoogle Scholar
  56. Hashimoto M., Hossain S., and Shido O. (2006). Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol. Cell. Biochem. 293:1–8.PubMedCrossRefGoogle Scholar
  57. Helfand S.L., and Rogina B., (2000). Regulation of gene expression during aging. In: Hekimi, S. (ed.), The Molecular Genetics of Aging, vol. 29, pp. 67–80. Springer-Verlag, Berlin.Google Scholar
  58. Hofmann K., Tomiuk S., Wolff G., and Stoffel W. (2000). Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sc. USA 97:5895–5900.CrossRefGoogle Scholar
  59. Hichami A., Datiche F., Ullah S., Lienard F., Chardigny J.M., Cattarelli M., and Khan N.A. (2007). Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav. Brain Res. 184:1–10.PubMedCrossRefGoogle Scholar
  60. Hinman J.D., Chen C.D., Oh S.Y., Hollander W., and Abraham C.R. (2008). Age dependent accumulation of ubiquitinated 2',3'-cyclic nucleotide 3'-phosphodiesterase in myelin lipid rafts. Glia 56:118–133.PubMedCrossRefGoogle Scholar
  61. Horrocks L.A., VanRollins M., and Yates A.J. (1981). Lipid changes in the ageing brain. In: Davison A.N., and Thompson R.H.S. (eds.), The Molecular Basis of Neuropathology, pp. 601–630. Edward Arnold Ltd., London.Google Scholar
  62. Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedCrossRefGoogle Scholar
  63. Hulbert A.J. (2005). On the importance of fatty acid composition of membranes for aging. J. Theor. Biol. 234:277–288.PubMedCrossRefGoogle Scholar
  64. Hulbert A.J., Pamplona R., Buffenstein R., and Buttemer W.A. (2007). Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87:1175–1213.PubMedCrossRefGoogle Scholar
  65. Igarashi M., Ma K., Chang L., Bell J.M., and Rapoport S.I., (2007). Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J. Lipid Res. 48:2463–2470.PubMedCrossRefGoogle Scholar
  66. Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.PubMedCrossRefGoogle Scholar
  67. Ikemoto A., Nitta A., Furukawa S., Ohishi M., Nakamura A., Fujii Y., and Okuyama H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci. Lett. 285:99–102.PubMedCrossRefGoogle Scholar
  68. Ilincheta de Boschero M.G., Rogue M.E., Salvador G.A., Giusto N.M. (2000). Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp. Gerontol. 35:653–668.CrossRefGoogle Scholar
  69. Innis S.M. (2000). The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev. Neurosci. 22:474–480.PubMedCrossRefGoogle Scholar
  70. Innis S.M. (2008). Dietary omega-3 fatty acids and the developing brain. Brain Res. 1237:35–43.PubMedCrossRefGoogle Scholar
  71. Isbilen B., Fraser S.P., and Diamgoz M.B. (2006). Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int. J. Biochem. Cell Biol. 38:2173–2182.PubMedCrossRefGoogle Scholar
  72. Joseph J.A., Shukitt-Hale B., Casadesus G., and Fisher D. (2005). Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem. Res. 30:927–935.PubMedCrossRefGoogle Scholar
  73. Kim H.Y., and Hamilton J. (2000). Accumulation of docosahexaenoic acid in phosphatidylserine is selectively inhibited by chronic ethanol exposure in C-6 glioma cells. Lipids 35:187–195.PubMedCrossRefGoogle Scholar
  74. Kim H.Y., Akbar M., and Oau A. (2003). Effects of docosapentaenoic acid on neuronal apoptosis. Lipids 38:453–457.PubMedCrossRefGoogle Scholar
  75. Kodas E., Galineau L., Bodard S., Vancassel S., Guilloteau D., Besnard J.C., and Chalon S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J. Neurochem. 89:695–702.PubMedCrossRefGoogle Scholar
  76. Knight, J.A. (2000). The biochemistry of aging. Adv. Clin. Chem. 35:1–62.PubMedCrossRefGoogle Scholar
  77. Lee T.C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.CrossRefGoogle Scholar
  78. Lengqvist J., Mata De Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., and Griffiths W.J. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.PubMedCrossRefGoogle Scholar
  79. Kuperstein F., Yakubov E., Dinerman P., Gil S., Eylam R., Salem N. Jr., Yavin E. (2005). Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J. Neurochem. 95:1550–1562.PubMedCrossRefGoogle Scholar
  80. Kuperstein F., Eilam R., and Yavin E. (2008). Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J. Neurochem. 106:662–671.PubMedCrossRefGoogle Scholar
  81. Leaf A. (2001). The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n-3 polyunsaturated fatty acids: heart and brain. Lipids 36(Suppl):S107–S110.Google Scholar
  82. Leaf A., Xiao Y.F., Kang J.X., and Billman G.E. (2003). Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol. Ther. 98:355–377.PubMedCrossRefGoogle Scholar
  83. Lentz B.R. (2003). Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res. 42:423–438.PubMedCrossRefGoogle Scholar
  84. Levi deStein M., Medina J.H., and DeRobertis E.D. (1989). In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine. Brain Res. Mol. Brain Res. 5:9–15.Google Scholar
  85. Little S.J., Lynon M.A., Manku M., and Nicolaou A. (2007). Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins Leukot Essent Fatty Acids. 77:155–162.PubMedCrossRefGoogle Scholar
  86. Luikart B.W., Zhang W., Wayman G.A., Kwon C.H., Westbrook G.L., and Parada L.F. (2008). Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling. J. Neurosci. 28:7006–7012.PubMedCrossRefGoogle Scholar
  87. Madani S., Hichami A., Charkaoui-Malki M., and Khan N.A. (2004). Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. J. Biol. Chem. 279:1176–1183.PubMedCrossRefGoogle Scholar
  88. Mandel H., Sharf R., Berant M., Wanders R.J.A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.PubMedCrossRefGoogle Scholar
  89. Martin R.E., and Bazan N.G. (1992). Changing fatty acid content of growth cone lipids prior to synaptogenesis. J. Neurochem. 59:318–325.PubMedCrossRefGoogle Scholar
  90. Mattson M.P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J. Neurovirol. 8:539–550.PubMedCrossRefGoogle Scholar
  91. May M.J., and Ghosh S. (1998). Signal transduction through NF-kappa B. Immunol. Today 19:80–88.PubMedCrossRefGoogle Scholar
  92. McNamara R.K., Sullivan J., Richtand N.M., Jandacek R., Rider T., Tso P., Campbell N., and Lipton J. (2006). Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult DBA/2 J mice: relationship with ventral striatum dopamine concentrations. Synapse 62:725–735.CrossRefGoogle Scholar
  93. McNamara R.K., Able J., Jandacek R., Rider T., Tso P., and Lindquist D.M. (2009). Perinatal omega-3 fatty acid deficiency selectively reduces myo-inositol levels in the adult rat prefrontal cortex: an in vivo proton magnetic resonance spectroscopy study. J Lipid Res. 50:405–411.Google Scholar
  94. Mocchegiani E., Costarelli L., Giacconi R., Cipriano C., Muti E., Tesei S., Malavolta M. (2006). Nutrient-gene interaction in ageing and successful ageing A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mec. Ageing Dev. 127:517–525.CrossRefGoogle Scholar
  95. Morgan, T.E., Xie, Z., Goldsmith, S., Yoshida, T., Lanzrein, A.S., Stone, D., Rozovsky, I., Perry G., Smith M.A., and Finch C.E. (1999). The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89:687–699.PubMedCrossRefGoogle Scholar
  96. Moriguchi T., Greiner R.S., and Salem N. Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75:2563–2573.PubMedCrossRefGoogle Scholar
  97. Moriguchi T., Loewke J., Garrison M., Catalan J.N., and Salem N. Jr. (2001). Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 42:419–427.PubMedGoogle Scholar
  98. Murthy M., Hamilton J., Greiner R.S., Moriguchi T., Salem N. Jr., and Kim H.Y. (2002). Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus. J. Lipid Res. 43:611–617.PubMedCrossRefGoogle Scholar
  99. Nagan N., and Zoeller R.A. (2001). Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40:199–229.PubMedCrossRefGoogle Scholar
  100. Niu S.L., Mitchell D.C., Lim S.Y., Wen Z.M., Kim H.Y., Salem N. Jr., and Litman B.J. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279:31098–31104.PubMedCrossRefGoogle Scholar
  101. Peters A., (2002). The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31:581–593.PubMedCrossRefGoogle Scholar
  102. Petursdottir A.L., Farr S.A., Morley J.E., Bank W.A., and Akuladottir G.V. (2007). Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiol Aging. 28:1170–1178.PubMedCrossRefGoogle Scholar
  103. Petursdottir A.L., Farr S.A., Morley J.E., Banks W.A., and kuladottir G.V. (2008). Effect of dietary n-3 polyunsaturated fatty acids on brain lipid fatty acid composition, learning ability, and memory of senescence-accelerated mouse. J. Gerontol.A Biol. Sci. Med. Sci. 63:1153–1160.PubMedCrossRefGoogle Scholar
  104. Pifferi F., Jouin M., Alessandri J.M., Haedke U., Roux F., Perriere N., Denis I., Lavialle M., and Guesnet P. (2007). n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids 77:279–286.PubMedCrossRefGoogle Scholar
  105. Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G.Y., Bazan N., Wu J.Y., Porcellati G., and Sun A.Y. (eds.), Neural Membranes, pp. 3–35. Humana Press, New York.Google Scholar
  106. Rao J.S., Ertley R.N., Lee H.T., DeMar J.C. Jr., Arnold J.T., Rapoport S.I., and Bazinet R.P. (2007). n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol. Psychiatry 12:36–46.PubMedCrossRefGoogle Scholar
  107. Rapoport S.I., Rao J.S., and Igarashi M. (2007). Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 77:251–261.PubMedCrossRefGoogle Scholar
  108. Rouser G., and Yamamoto A. (1968). Curvilinear regression course of human brain lipid composition changes with age. Lipids 3:284–287.PubMedCrossRefGoogle Scholar
  109. Rump P., Mensink R.P., Kester A.D., and Hornstra G. (2001). Essential fatty acid composition of plasma phospholipids and birth weight: a study in term neonates. Am. J. Clin. Nutr. 73:797–806.PubMedGoogle Scholar
  110. Salem N. Jr., Moriguchi T., Greiner R.S., McBride K., Ahmad A., Catalan J.N., and Slotnick B. (2001). Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J. Mol. Neurosci. 16:299–307.PubMedCrossRefGoogle Scholar
  111. Salvador G.A., Lopez F.M., and Giusto N.M. (2002). Age-related changes in central nervous system phosphatidylserine decarboxylase activity. J. Neurosci. Res. 70:283–289.PubMedCrossRefGoogle Scholar
  112. Salvati S., Attorri I., Avellino C., Di Biase A., Sanchez M. (2000). Diet, lipids and brain development. Dev. Neurosci. 22:481–487.PubMedCrossRefGoogle Scholar
  113. Sastry P. (1985). Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24:69–176.PubMedCrossRefGoogle Scholar
  114. Scott B.L., and Bazan N.G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86:2903–2907.PubMedCrossRefGoogle Scholar
  115. Sellner P.A. (1993). Retinal FABP principally localizes to neurons and not to glial cells. Mol. Cell. Biochem. 123:121–127.PubMedCrossRefGoogle Scholar
  116. Spindler S.R. (2005). Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech. Ageing Dev. 126:960–966.PubMedCrossRefGoogle Scholar
  117. Spindler S.R., and Dhahbi J.M. (2007). Conserved and tissue-specific genic and physiologic responses to caloric restriction and altered IGFI signaling in mitotic and postmitotic tissues. Annu. Rev. Nutri. 27:193–217.CrossRefGoogle Scholar
  118. Stekhoven F.M., Tijmes J., Umeda M., Inoue K., and De Punt J.J. (1994). Monoclonal antibody to phosphatidylserine inhibits Na+/K+-ATPase activity. Biochim. Biophys. Acta 1194:155–165.PubMedCrossRefGoogle Scholar
  119. Stockard J.E., Saste M.D., Benford V.J., Barness L., Auested N., and Carver J.D. (2000). Effect of docosahexaenoic acid content of maternal diet on auditory brainstem conduction times in rat pups. Dev. Neurosci. 22:494–499.PubMedCrossRefGoogle Scholar
  120. Tam O., and Innis S.M. (2006). Dietary polyunsaturated fatty acids in gestation alter fetal cortical phospholipids, fatty acids and phosphatidylserine synthesis. Dev. Neurosci. 28:222–229.PubMedCrossRefGoogle Scholar
  121. Toews A.D., and Horrocks L.A. (1976). Developmental and aging changes in protein concentration and 2', 3'-cyclic nucleosidemonophosphate phosphodiesterase activity (EC in human cerebral white and gray matter and spinal cord. J. Neurochem. 27:545–550.PubMedCrossRefGoogle Scholar
  122. Tvurina Y.Y., Tvurin V.A., Zhao O., Djukic M., Quinn V.A., Pitt B.R., and Kagan V.E. (2004). Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochem. Biophys. Res. Commun. 324:1059–1064.CrossRefGoogle Scholar
  123. Uauy R., and Dangour A.D. (2006). Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 64:S24–S33.PubMedCrossRefGoogle Scholar
  124. Ward G., Woods J., Reyzer M., and Salem N. Jr. (1996). Artificial rearing of infant rats on milk deficient in n-3 essential fatty acids: a rapid for the productionof experimental n-3 fatty acid deficiency. Lipids 31:71–77.PubMedCrossRefGoogle Scholar
  125. Wen Z., and Kim H.Y. (2004). Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J. Neurochem. 89:1368–1377.PubMedCrossRefGoogle Scholar
  126. Xiao Y.F., and Li X.Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedCrossRefGoogle Scholar
  127. Xiao Y., Wang L., Xu R.J., and Chen Z.Y. (2005a). DHA depletion in rat brain is associated with impairment on spatial learning and memory. Biomed. Environ. Sci. 19:474–480.Google Scholar
  128. Xiao Y., Huang Y., and Chen Z.Y. (2005b). Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br. J. Nutr. 94:544–550.PubMedCrossRefGoogle Scholar
  129. Ximenes da Silva A., Lavialle F., Gendrot G., Guesnet P., Alessandri J.M., and Lavialle (2002). Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J. Neurochem. 81:1328–1337.CrossRefGoogle Scholar
  130. Yamaji-Hasegawa A., and Tsujimoto M. (2006). Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29:1547–1553.PubMedCrossRefGoogle Scholar
  131. Yavin E., Glozman S., and Green P. (2001). Docosahexaenoic acid accumulation in the prenatal brain: prooxidant and antioxidant features. J. Mol. Neurosci. 16:229–235.PubMedCrossRefGoogle Scholar
  132. Yehuda S., Rabinovitz S., Carasso R.L., and Mostofsky D.I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedCrossRefGoogle Scholar
  133. Yoshida S., Yasuda A., Kawazato H., Sakai K., Shimada T., Takeshita M., Yuasa S., Kobayashi T., Watanabe S., and Okuyama H. (1997). Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of α-linolenate deficiency and a learning task. J. Neurochem. 68:1261–1268.PubMedCrossRefGoogle Scholar
  134. Yuryev A., and Wennogle L.P. (1998). The RAF family: an expanding network of post-translational controls and protein-protein interactions. Cell Res. 8:81–98.PubMedGoogle Scholar
  135. Zhang G., Gurtu V., Kain S.R., and Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.PubMedGoogle Scholar
  136. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations