Advertisement

Roles of Docosahexaenoic and Eicosapentaenoic Acids in Brain

  • Akhlaq A. Farooqui
Chapter

Docosahexaenoic acid (22:6 n−3, DHA) is an important essential polyunsaturated fatty acid (PUFA) that contains six cis double bonds located at positions 4, 7, 10, 13, 16, and 19. Eicosapentaenoic acid (20:5 n−3, EPA) is a 20-carbon fatty acid with five cis double bonds located at positions 4, 7, 10, 13, and 16. These essential fatty acids are found in fish and fish oil. Plant-derived sources of DHA and EPA precursors include flaxseed, flaxseed oil, walnuts, canola oil, and soybean oil. DHA and EPA incorporate into neural membrane glycerophospholipids, where they support neural cell membrane integrity and functions. DHA contents of brain vary considerably from one region to another, with the highest levels in the frontal cortex and the lowest in the substantia nigra/ventral tegmental area (Levant et al., 2006). Increased availability of DHA produces elevation in DHA content only in the olfactory bulb, parietal cortex, and substantia nigra/ventral tegmental area. In contrast, treatments that lower whole-brain DHA levels reduce DHA content in all brain regions except the thalamus, dorsal midbrain, and the substantia nigra/ventral tegmental area. Alterations in DHA level can be caused by changes in docosapentaenoic acid (n−6 DPA, 22:5n−6) content; however, the change in DHA and n−6 DPA is nonreciprocal in some brain regions (Levant et al., 2006).

Keywords

Fatty Acid Ratio Collective Evidence Plasma Membrane Target Ramos Cell Neural Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmad A., Moriguchi T., and Salem N.J. (2002). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26:210–218.PubMedGoogle Scholar
  2. Akbar M., and Kim H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.PubMedGoogle Scholar
  3. Akbar M., Calderon F., Wen Z.M., and Kim H.Y. (2005). Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.PubMedGoogle Scholar
  4. Anderson R.E., Landis D.J., and Dudley P.A. (1976). Essential fatty acid deficiency and renewal of rod outer segments in the albino rat. Invest Ophthalmol. 15:232–236.PubMedGoogle Scholar
  5. Apolloni, A., Prior, I.A., Lindsay, M., Parton, R.G., and Hancock, J.F. (2000). H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20:2475–2487.PubMedGoogle Scholar
  6. Arita M., Oh S.F., Chonan T., Hong S., Elangovan S., Sun Y.P., Uddin J., Petasis N.A., and Serhan C.N. (2006). Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281:22847–22854.PubMedGoogle Scholar
  7. Arita M., Ohira T., Sun Y.P., Elangovan S., Chiang N., and Serhan C.N. (2007). Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178:3912–3917.PubMedGoogle Scholar
  8. Bazan N.G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.PubMedGoogle Scholar
  9. Bazan N.G. (2005a). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedGoogle Scholar
  10. Bazan N.G. (2005b). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.PubMedGoogle Scholar
  11. Bazan N.G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.PubMedGoogle Scholar
  12. Berry C.B., Hayes D., Murphy A., Wiessner M., Rauen T., and McBean G.J. (2005). Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037:123–133.PubMedGoogle Scholar
  13. Bougnoux P. (1999). n-3 Polyunsaturated fatty acids and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2:121–126.PubMedGoogle Scholar
  14. Broom D.C., Samad T.A., Kohno T., Tegeder I., Geisslinger G., and Woolf C.J. (2004). Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 124:891–900.PubMedGoogle Scholar
  15. Brown E.R., and Subbaiah P.V. (1994). Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts. Lipids 29:825–829.PubMedGoogle Scholar
  16. Calder P.C., and Grimble R.F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56:S14–S19.PubMedGoogle Scholar
  17. Calder P.C. (2003). Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz. J. Med. Biol. Res. 36:433–446.PubMedGoogle Scholar
  18. Calder P.C. (2004). n-3 Fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.PubMedGoogle Scholar
  19. Calder P.C. (2007). Immunonutrition in surgical and critically ill patients. Br. J. Nutr. 98(Suppl. 1):S133–S139.PubMedGoogle Scholar
  20. Calderon F., and Kim H.Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90:979–988.PubMedGoogle Scholar
  21. Calon F., Lim G.P., Morihara T., Yang F.S., Ubeda O., Salem N.J., Frautschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J. Neurosci. 22:617–626.PubMedGoogle Scholar
  22. Calviello G., Resci F., Serini S., Piccioni E., Toesca A., Boninsegna A., Monego G., Ranelletti F.O., and Palozza P. (2007). Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28:1202–1209.PubMedGoogle Scholar
  23. Cao D.H., Xue R.H., Xu J., and Liu Z.L. (2005). Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J. Nutr. Biochem. 16:538–546.PubMedGoogle Scholar
  24. Caramia G. (2008). Omega-3: from cod-liver oil to nutrigenomics. Minerva Pediatr. 60:443–455.PubMedGoogle Scholar
  25. Caughey G.E., Mantzioris E., Gibson R.A., Cleland L.G., and James M.J. (1996). The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 63:116–122.PubMedGoogle Scholar
  26. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A.M., Besnard J.C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.PubMedGoogle Scholar
  27. Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty acids 75:259–269.Google Scholar
  28. Champeil-Potokar G., Chaumontet C., Guesnet P., Lavialle M., and Denis I. (2006). Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes. Eur. J. Neurosci. 24:3084–3090.PubMedGoogle Scholar
  29. Chapkin R.S., McMurray D.N., Davidson L.A., Patil B.S., Fan Y.Y., Lupton J.R. (2008). Bioactive dietary long-chain fatty acids: emerging mechanisms of action. Br. J. Nutr. 100:1152–1157.PubMedGoogle Scholar
  30. Choy, E., Chiu, V.K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I.E., and Philips, M.R. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80.PubMedGoogle Scholar
  31. Clarke S.D. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 83(Suppl. 1):S59–S66.PubMedGoogle Scholar
  32. Coleman R.A., Smith W., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.PubMedGoogle Scholar
  33. Connor W.E., Neuringer M., and Lin D.S. (1990). Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J. Lipid Res. 31:237–247.PubMedGoogle Scholar
  34. Correale J., and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 251:1304–1316.PubMedGoogle Scholar
  35. Das U.N. (2003). Long-chain polyunsaturated fatty acids in memory formation and consolidation: Further evidence and discussion. Nutrition 19:988–993.PubMedGoogle Scholar
  36. Delton-Vandenbroucke I., Sarda N., Moliere P., Lagarde M., and Gharib A. (1996). Modulation of norepinephrine-stimulated cyclic AMP accumulation in rat pinealocytes by n-3 fatty acids. Eur. J. Pharmacol. 312:379–384.PubMedGoogle Scholar
  37. Delton-Vandenbroucke I., Vericel E., Januel C., Carreras M., Lecomte M., and Lagarde M. (2001). Dual regulation of glutathione peroxidase by docosahexaenoic acid in endothelial cells depending on concentration and vascular bed origin. Free Radic. Biol. Med. 30:895–904.PubMedGoogle Scholar
  38. de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., and Perlmann T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.PubMedGoogle Scholar
  39. Diaz O., Berquand A., Dubois M. Di Agostino S., Sette C., Bourgoin S., Lagarde M., Nemoz G., and Prigent A.F. (2002). The mechanism of docosahexaenoic acid-induced phospholipase D activation in human lymphocytes involves exclusion of the enzyme from lipid rafts. J. Biol. Chem. 277:39368–39378.PubMedGoogle Scholar
  40. Dona M., Fredman G., Schwab J.M., Chiang N., Arita M., Goodarzi A., Cheng G., von Andrian U.H., and Serhan C.N. (2008). Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112:848–855.PubMedGoogle Scholar
  41. Duffield J.S., Hong S., Vaidya V.S., Lu Y., Fredman G., Serhan C.N., and Bonventre J.V. (2006). Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177:5902–5911.PubMedGoogle Scholar
  42. Duncan R.E., El-Sohemy A., and Archer M.C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.PubMedGoogle Scholar
  43. Edwards R., Peet M., Shay J., and Horrobin D. (1998). Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J. Affect Disord. 48:149–155.PubMedGoogle Scholar
  44. Fan Y.Y., Ly L.H., Barhoumi R., McMurray D.N., and Chapkin R.S. (2004). Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J. Immunol. 173:6151–6160.PubMedGoogle Scholar
  45. Farooqui A.A., and Horrocks L.A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  46. Farooqui A.A., Antony P., Ong W.Y., Horrocks L.A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  47. Farooqui, A.A., Ong, W.Y., and Horrocks, L.A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutical importance for the treatment of neurological disorders. Pharmacol. Rev. 58:591–620.PubMedGoogle Scholar
  48. Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  49. Farooqui A.A., Ong W.Y., Horrocks L.A., Chen P., and Farooqui T. (2007). Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res. Rev. 56:443–471.PubMedGoogle Scholar
  50. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity, pp. 1–279. Springer, New York.Google Scholar
  51. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.PubMedGoogle Scholar
  52. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Brit. J. Pharmacol. 132:1417–1422.Google Scholar
  53. Gerbi A., Zerouga M., Debray M., Durand G., Chanez C., and Bourre J.M. (1994). Effect of fish oil diet on fatty acid composition of phospholipids of brain membranes and on kinetic properties of Na+,K+-ATPase isoenzymes of weaned and adult rats. J. Neurochem. 62:1560–1569.PubMedGoogle Scholar
  54. Gerbi A., Maixent J.M., Barbey O., Jamme I., Pierlosvisi M., Coste T., Peroni G., Nouvelot A., Vague P., and Raccah D. (1998). Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids. J. Neurochem. 71:732–740.PubMedGoogle Scholar
  55. German O.L., Insua M.F., Gentili C., Rotstein N.P., and Politi E. (2006). Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J. Neurochem. 98:1507–1520.PubMedGoogle Scholar
  56. Goncalves C.G., Ramos E.J.B., Suzuki S., and Meguid M.M. (2005). Omega-3 fatty acids and anorexia. Curr. Opin. Clin. Nutr. Metab. Care 8:403–407.PubMedGoogle Scholar
  57. Grimm H., Mayer K., Mayser P., and Eigenbrodt E. (2002). Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br. J. Nutr. 87:S59–S67.PubMedGoogle Scholar
  58. Guo W., Xie W., Lei T., and Hamilton J.A. (2005). Eicosapentaenoic acid, but not oleic acid, stimulates beta-oxidation in adipocytes. Lipids 40:815–821.PubMedGoogle Scholar
  59. Hamilton J., Greiner R., Salem N. Jr., and Kim H.Y. (2000). n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.PubMedGoogle Scholar
  60. Harbige L.S. (2003). Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341.PubMedGoogle Scholar
  61. Hashimoto M., Hossain M.S., Yamasaki H., Yazawa K., and Masumura S. (1999). Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304.PubMedGoogle Scholar
  62. Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J. Pharmacol. Sci. 92:308–316.PubMedGoogle Scholar
  63. Hirashima Y., Farooqui A.A., Mills J.S., and Horrocks L.A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.PubMedGoogle Scholar
  64. Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P.G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedGoogle Scholar
  65. Hong S., Gronert K., Devchand P.R., Moussignac R.L., and Serhan C.N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.PubMedGoogle Scholar
  66. Hong S., Porter T.F., Lu Y., Oh S.F., Pillai P.S., and Serhan C.N. (2008). Resolvin E1 metabolome in local inactivation during inflammation-resolution. J. Immunol. 180:3512–3519.PubMedGoogle Scholar
  67. Honore E., Barhanin J., Attali B., Lesage F., and Lazdunski M. (1994). External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 91:1937–1941.PubMedGoogle Scholar
  68. Horrocks L.A., and Yeo Y.K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.PubMedGoogle Scholar
  69. Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedGoogle Scholar
  70. Ikemoto A., Kobayashi T., Watanabe S., and Okuyama H. (1997). Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem. Res. 22:671–678.PubMedGoogle Scholar
  71. Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.PubMedGoogle Scholar
  72. Izaki Y., Hashimoto M., and Arita J. (1999). Enhancement by 1-oleoyl-2-docosahexaenoyl phosphatidylcholine of long-term potentiation in the rat hippocampal CA1 region. Neurosci. Lett. 260:146–148.PubMedGoogle Scholar
  73. Jump D.B. (2002a). Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 13:155–164.PubMedGoogle Scholar
  74. Jump D.B. (2002b). The biochemistry of n-3 polyunsaturated fatty acids. J. Biol. Chem. 277:8755–8758.PubMedGoogle Scholar
  75. Jump D.B. (2004). Fatty acid regulation of gene transcription. Crit. Rev. Clin. Lab. Sci. 41:41–78.PubMedGoogle Scholar
  76. Kawakito E, Hashimoto M., and Shhido O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience. 139:991–997.Google Scholar
  77. Kim H.Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.PubMedGoogle Scholar
  78. Kim H.H., Shin C.M., Park C.H., Kim K.H., Cho, K.H., Eun H.C., and Chung J.H. (2005). Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid Res. 46:1712–1720.PubMedGoogle Scholar
  79. Kishida E., Yano M., Kasahara M., and Masuzawa Y. (1998). Distinctive inhibitory activity of docosahexaenoic acid against sphingosine-induced apoptosis. Biochim. Biophys. Acta Lipids Lipid Metab. 1391:401–408.Google Scholar
  80. Kitajka K., Puskás L.G., Zvara A., Hackler L.J., Barceló-Coblijn G., Yeo Y.K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA 99:2619–2624.PubMedGoogle Scholar
  81. Lagarde M., Calzada C., and Vericel E. (2003). Pathophysiologic role of redox status in blood platelet activation. Influence of docosahexaenoic acid. Lipids 38:465–468.PubMedGoogle Scholar
  82. Lengqvist J., Mata de Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., and Griffiths W.J. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.PubMedGoogle Scholar
  83. Levant B., Ozias M.K., Jones K.A., and Carlson S.E. (2006). Differential effects of modulation of docosahexaenoic acid content during development in specific regions of rat brain. Lipids 41:407–414.PubMedGoogle Scholar
  84. Li Q., Wang M., Tan L., Wang C., Ma J., Li N., Li Y., Xu G., and Li J.S. (2005). Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J. Lipid Res. 46:1904–1913.PubMedGoogle Scholar
  85. Li Q., Tan L., Wang C., Li N., Li Y., and Li J. (2006). Polyunsaturated eicosapentaenoic acid changes lipid composition in lipid rafts. Eur. J. Nutr. 45:144–151.PubMedGoogle Scholar
  86. Li Q., Zhang Q., Wang M., Zhao S., Ma J., Luo N., Li N., Li Y., Xu G., and Li J. (2007). Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 89:169–177.PubMedGoogle Scholar
  87. Logan A.C. (2003). Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern. Med. Rev. 8:410–425.PubMedGoogle Scholar
  88. Lonergan P.E., Martin D.S., Horrobin D.F., and Lynch M.A. (2004). Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J. Neurochem. 91:20–29.PubMedGoogle Scholar
  89. Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M., Botkjaer A., Gotlinger K., Serhan C.N., and Bazan N.G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115:2774–2783.PubMedGoogle Scholar
  90. Ma D., Boneva N.B., Warashina S., Kaplamadzhiev D.B., Mori Y., Nakaya M.A., Kikuchi M., Tonchev A.B., Okano H., and Yamashima T. (2008). Expression of free fatty acid receptor GPR40 in the neurogenic niche of adult monkey hippocampus. Hippocampus 18:326–333.PubMedGoogle Scholar
  91. Madsen, L., Froyland, L., Dyroy, E., Helland, K., and Berge, R.K. (1998). Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation. J. Lipid Res. 39:583–593.PubMedGoogle Scholar
  92. Maes M., Mihavlova L., Kubera M., and Bosmans E. (2007). Why fish oils may not always be adequate treatments for depression or other inflammatory illnesses: docosahexaenoic acid, an omega-3 polyunsaturated fatty acid, induces a Th-1-like immune response. NeuroEndocrinol. Lett. 28:875–880.PubMedGoogle Scholar
  93. Marcheselli V.L., Hong S., Lukiw W.J., Tian X.H., Gronert K., Musto A., Hardy M., Gimenez J.M., Chiang N., Serhan C.N., and Bazan N.G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  94. Marszalek J.R., and Lodish H.F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: Breastmilk and fish are good for you. Annu. Rev Cell Dev Biol. 21:633–657.PubMedGoogle Scholar
  95. Marszalek J.R., Kitidis C., DiRusso C.C., and Lodish H.F. (2005). Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280:10817–10826.PubMedGoogle Scholar
  96. Massaro M., Habib A., Lubrano L., Del Turco S., Lazzerini G., Bourcier T., Weksler B.B., and De Caterina R. (2006). The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKCε inhibition. Proc. Natl. Acad. Sci. USA 103:15184–15189.PubMedGoogle Scholar
  97. Matsumura K. (2007). Effects of eicosapentaenoic acid on visceral fat and heart rate variability: assessment by power spectral analysis. J. Cardiol. 50:243–251.PubMedGoogle Scholar
  98. Matta J.A., Miyares R.L., and Ahern G.P. (2007). TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J. Physiol. (London) 578:397–411.Google Scholar
  99. Mitchell D.C., Niu S.L. and Litman B.J. (2003). Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38:437–443.PubMedGoogle Scholar
  100. Mitchell D.C., Gawrisch K., Litman B.J., and Salem N. Jr. (1998). Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26:365–370.PubMedGoogle Scholar
  101. Miura Y., Takahara K., Murata Y., Utsumi K., Tada M., and Takahata K. (2004). Docosahexaenoic acid induces apoptosis via the bax-independent pathway in HL-60 cells. Biosci. Biotechnol. Biochem. 68:2415–2417.PubMedGoogle Scholar
  102. Moriguchi T., Greiner R.S., and Salem N. Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75:2563–2573.PubMedGoogle Scholar
  103. Muckova K., Duffield J.S., Held K.D., Bonventre J.V., and Sheridan A.M. (2006). cPLA2-interacting protein, PLIP, causes apoptosis and decreases G1 phase in mesangial cells. Am. J. Physiol. Renal Physiol. 290:F70–F79.PubMedGoogle Scholar
  104. Mukherjee P.K., Marcheselli V.L., Serhan C.N., and Bazan N.G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.PubMedGoogle Scholar
  105. Murck H., and Manku M. (2007). Ethyl-EPA in Huntington disease: potentially relevant mechanism of action. Brain Res. Bull. 72:159–164.PubMedGoogle Scholar
  106. Nabekura J., Noguchi K., Witt M.R., Nielsen M., and Akaike N. (1998). Functional modulation of human recombinant gamma-aminobutyric acid type A receptor by docosahexaenoic acid. J. Biol. Chem. 273:11056–11061.PubMedGoogle Scholar
  107. Nakamura M.T., and Nara T.Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fatty Acids 68:145–150.PubMedGoogle Scholar
  108. Nakamura M.T., Cheon Y., Li Y., and Nara T.Y. (2004). Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083.PubMedGoogle Scholar
  109. Narayana B.A., Narayana N.K., Simi B., and Reddy B.S. (2003). Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 63:972–979.Google Scholar
  110. Neuringer M., and Connor W.E. (1986). n-3 Fatty acids in the brain and retina: evidence for their essentiality. Nutr. Rev. 44:285–294.PubMedGoogle Scholar
  111. Obajimi O., Black K.D., MacDonald D.J., Boyle R.M., Glen I., Ross B.M. (2005). Differential effects of eicosapentaenoic and docosahexaenoic acids upon oxidant-stimulated release and uptake of arachidonic acid in human lymphoma U937 cells. Pharmacol. Res. 52:183–191.PubMedGoogle Scholar
  112. Ong W.L., Jiang B., Tang N., Ling S.F., Yeo J.F., Wei S., Farooqui A.A., and Ong W.Y. (2006). Differential effects of polyunsaturated fatty acids on membrane capacitance and exocytosis in rat pheochromocytoma-12 cells. Neurochem Res. 31:41–48.PubMedGoogle Scholar
  113. Padma M., Das U.N. (1999). Effect of cis-unsaturated fatty acids on the activity of protein kinases and protein phosphorylation in macrophage tumor (AK-5) cells in vitro. Prostaglandins Leukot Essent Fatty Acids. 60:55–63.PubMedGoogle Scholar
  114. Park Y., and Harris W. (2002). EPA, but not DHA, decreases mean platelet volume in normal subjects. Lipids. 37:941–946.PubMedGoogle Scholar
  115. Peet M., Murphy B., Shay J., and Horrobin D. (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43:315–319.PubMedGoogle Scholar
  116. Peet M. (2003). Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot. Essent. Fatty Acids 69:477–485.Google Scholar
  117. Peet M., and Strokes C. (2005). Omega-3 fatty acids in the treatment of psychiatric disorders. Drug 65:1051–1059.Google Scholar
  118. Phillis, J.W., Horrocks, L.A., and Farooqui, A.A. (2006). Cyclooxygenases, lipoxygenases, epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  119. Pifferi F., Roux F., Langelier B., Alessandri J.M., Vancassel S., Jouin M., Lavialle M., and Guesnet P. (2005). (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J. Nutr. 135:2241–2246.PubMedGoogle Scholar
  120. Pifferi F., Jouin M., Alessandri J.M., Haedke U., Roux F., Perrière N., Denis I., Lavialle M., and Guesnet P. (2007). n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids. 77:279–286.PubMedGoogle Scholar
  121. Price P.T., Nelson C.M., and Clarke S.D. (2000). Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol. 11:3–7.PubMedGoogle Scholar
  122. Poling J.S., Karanian J.W., Salem N. Jr., and Vicini S. (1995). Time- and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol. Pharmacol. 47:381–390.PubMedGoogle Scholar
  123. Puri B.K., Richardson A.J., Horrobin D.F., Easton T., Saeed N., Oatridge A., Hajnal J.V., and Bvdder G.M. (2000). Eicosapentaenoic acid treatment in schizophrenia associated with symptom remission, normalisation of blood fatty acids, reduced neuronal membrane phospholipid turnover and structural brain changes. Int. J. Clin. Pract. 54:57–63.PubMedGoogle Scholar
  124. Puskás L.G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.PubMedGoogle Scholar
  125. Puskas L.G., and Kitajka K. (2006). Nutrigenomic approaches to study the effects of n-3 PUFA diet in the central nervous system. Nutr. Health 18:227–232.PubMedGoogle Scholar
  126. Rahman M.M., Bhattacharya A., and Fernandes G. (2008). Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid. J. Cell. Physiol. 214:201–209.PubMedGoogle Scholar
  127. Rao J.S., Ertley R.N., Lee H.J., DeMar J.C. Jr., Arnold J.T., Rapoport S.I., and Bazinet R.P. (2007). n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol. Psychiatry. 12:36–46.PubMedGoogle Scholar
  128. Rotstein N.P., Aveldaño M.I., Barrantes F.J., Roccamo A.M., and Politi L.E. (1997). Apoptosis of retinal photoreceptors during development in vitro: Protective effect of docosahexaenoic acid. J. Neurochem. 69:504–513.PubMedGoogle Scholar
  129. Rotstein N.P., Politi L.E., and Aveldaño M.I. (1998). Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest. Ophthalmol. Vis. Sci. 39:2750–2758.PubMedGoogle Scholar
  130. Salvati S., Natali F., Attorri L., Raggi C., Di Biase A., and Sanchez M. (2004). Stimulation of myelin proteolipid protein gene expression by eicosapentaenoic acid in C6 glioma cells. Neurochem Int. 44:331–338.PubMedGoogle Scholar
  131. Salvati S., Natali F., Attorri L., Di Benedetto R., Leonardi F., Biase A., Natali F., Fortuna S., Lorenzini P., Sanchez M., Ricceri L., and Vitelli L. (2008). Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J. Neurosci. Res. 86:776–784.PubMedGoogle Scholar
  132. Sanderson P., and Calder P.C. (1998). Dietary fish oil appears to prevent the activation of phospholipase C-γ in lymphocytes. Biochim. Biophys. Acta. 1392:300–308.PubMedGoogle Scholar
  133. SanGiovanni J.P., and Chew E.Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retinal Eye Res. 24:87–138.Google Scholar
  134. Seo J., Barhoumi R., Johnson A.E., Lupton J.R., and Chapkin R.S. (2006). Docosahexaenoic acid selectively inhibits plasma membrane targeting of lipidated proteins. FASEB J. 20:770–772.PubMedGoogle Scholar
  135. Serhan C.N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.PubMedGoogle Scholar
  136. Serhan C.N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedGoogle Scholar
  137. Serhan C.N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  138. Shaikh S.R., Dumaual A.C., LoCassio D., Siddiqui R.A., and Stillwell W. (2003). Acyl chain unsaturation in PEs modulates phase separation from lipid raft molecules. Biochem. Biophys. Res. Commun. 311:793–796.Google Scholar
  139. Shaikh S.R., Dumaual A.C., Castillo A., LoCascio D., Siddiqui R.A., Stillwell W., and Wassall S.R. (2004). Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: A comparative NMR, DSC, AFM, and detergent extraction study. Biophys. J. 87:1752–1766.PubMedGoogle Scholar
  140. Shirao S., Fujisawa H., Kuda A., Kurokawa T., Yoneda H., Kunitsugu I., Ogasawara K., Soma M., Kobayashi S., Ogawa A., and Suzuki M. (2008). Inhibitory effects of eicosapentaenoic acid on chronic cerebral vasospasm after subarachnoid hemorrhage: possible involvement of a sphingosylphosphorylcholine-rho-kinase pathway. Cerebrovas. Dis. 26:30–37.Google Scholar
  141. Siddiqui R.A., Wiesehan J., Stillwel W., Jenski L., and Kovacs R. (2001). Prevention of cytotoxic effects of docosahexaenoic acid in Jurkat leukemic cells by phosphatidic acid. FASEB J. 15:A282.Google Scholar
  142. Siddiqui R.A., Jenski L.J., Harvey K.A., Wiesehan J.D., Stillwell W., and Zaloga G.P. (2003). Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem. J. 371:621–629.PubMedGoogle Scholar
  143. Siddiqui R.A., Shaikh S.R., Sech L.A., Yount H.R., Stillwell W., and Zaloga G.P. (2004). Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini-Rev. Med. Chem. 4:859–871.PubMedGoogle Scholar
  144. Siddiqui R.A., Harvey, K.A., Zaloga, G.P., and Stillwell, W. (2007). Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr. Clin. Proct. 22:74–88.Google Scholar
  145. Sohma R., Takahashi M., Takada H., Takada H., and Kuwayama H. (2007). Protective effect of n-3 polyunsaturated fatty acid on primary culture of rat hepatocytes. J. Gastroenterol. Hepatol. 22:1965–1970.PubMedGoogle Scholar
  146. Song C., and Zhaq S. (2007). Omega-3 fatty acid eicosapentaenoic acid. a new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations. Expert Opin. Investig. Drugs. 16:1627–1638.PubMedGoogle Scholar
  147. Sperling R.I., Rubin J.J., Kylander K.A., Lee T.H., Lewis R.A., and Austen K.F. (1987). The effects of N-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes. J. Immunol. 139:4186–4191.PubMedGoogle Scholar
  148. Sperling R.I. (1991). Effects of dietary fish oil on leukocyte leukotriene and PAF generation and on neutrophil chemotaxis. World Rev. Nutr. Diet 66:391–400.Google Scholar
  149. Stahl L.A., Begg D.P., Weisinger R.S., and Sinclair A.J. (2008). The role of omega-3 fatty acids in mood disorders. Curr. Opi. Investig. Drugs 9:57–64.Google Scholar
  150. Stulnig T.M. (2003). Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int. Arch. Allergy Immunol. 132:310–321.PubMedGoogle Scholar
  151. Sugiyama E., Ishikawa Y., Li Y., Kagai T., Nobayashi M., Tanaka N., Kamijo Y., Yokoyama S., Hara A., and Aoyama T. (2008). Eicosapentaenoic acid lowers plasma and liver cholesterol levels in the presence of peroxisome proliferators-activated receptor alpha. Life Sci. 83:19–28.PubMedGoogle Scholar
  152. Svensson C.I., and Yaksh T.L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42:553–583.PubMedGoogle Scholar
  153. Swann P.G., Parent C.A., Croset M., Fonlupt P., Lagarde M., Venton D.L., and Le Breton G.C. (1990). Enrichment of platelet phospholipids with eicosapentaenoic acid and docosahexaenoic acid inhibits thromboxane A2/prostaglandin H2 receptor binding and function. J. Biol. Chem. 265:21692–21697.PubMedGoogle Scholar
  154. Szentandrassy N., Perez-Bido M.R., Alonzo E., Negretti N., and O’Neill S.C. (2007). Protein kinase A is activated by the n-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. J. Physiol. 582:349–358.PubMedGoogle Scholar
  155. Tjonahen E., Oh S.F., Siegelman J., Elangovan S., Percarpio K.B., Hong S., Arita M., and Serhan C.N. (2006). Resolvin E2: identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Chem. Biol. 13:1193–1202.PubMedGoogle Scholar
  156. Triggiani M., Connell T.R., and Chilton F.H. (1990). Evidence that increasing the cellular content of eicosapentaenoic acid does not reduce the biosynthesis of platelet-activating factor. J. Immunol. 145:2241–2248.PubMedGoogle Scholar
  157. Valentine R.C., and Valentine D.L. (2004). Omega-3 fatty acids in cellular membranes: a unified concept. Prog. Lipid Res. 43:383–402.PubMedGoogle Scholar
  158. Vassiliou E.K., Kesler O.M., Tadros J.H., and Ganea D. (2008). Bone marrow-derived dendritic cells generated in the presence of resolvin E1 induce apoptosis of activated CD4+ T cells. J. Immunol. 181:4534–4544.PubMedGoogle Scholar
  159. Verlengia R., Gorjao R., Kanunfre C.C., Bordin S., Martins de Lima T., Martins E.F., Newsholme P., and Curi R. (2004a). Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids 39:857–864.PubMedGoogle Scholar
  160. Verlengia R., Gorjao R., Kanunfre C.C., Bordin S., Martins de Lima T., Martins E.F., and Curi R. (2004b). Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J. Nutr. Biochem. 15:657–665.PubMedGoogle Scholar
  161. Wang X., Zhao X., Mao Z.Y., Wang X.M., and Liu Z.L. (2003). Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14:2457–2461.PubMedGoogle Scholar
  162. Wassall S.R., Brzustowicz M.R., Shaikh S.R., Cherezov V., Caffrey M., and Stillwell W. (2004). Order from disorder, corralling cholesterol with chaotic lipids – the role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88.PubMedGoogle Scholar
  163. Wiedmann T.S., Pates R.D., Beach J.M., Salmon A., and Brown M.F. (1988). Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry. 27:6469–6474.PubMedGoogle Scholar
  164. Wilson C.J., Finch C.E., and Cohen H.J. (2002). Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J. Am. Geriatr Soc. 50:2041–2056.PubMedGoogle Scholar
  165. Willumsen N., Vaagenes H., Lie O., Rustan A., and Berge R.K. (1996). Eicosapentaenoic acid, but not docosahexaenoic acid, increases mitochondrial fatty acid oxidation and upregulates 2,4-dienoyl-CoA reductase gene expression in rats. Lipids 31:579–592.PubMedGoogle Scholar
  166. Wu D., and Meydani S.N. (1998). n-3 polyunsaturated fatty acids and immune function. Proc. Nutr. Soc. 57:503–509.PubMedGoogle Scholar
  167. Wu M., Harvey K.A., Ruzmetov N., Welch Z.R., Sech L., Jackson K., Stillwell W., Zaloga G.P., and Siddiqui R.A. (2005). Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J. Cancer 117:340–348.PubMedGoogle Scholar
  168. Wu C., Sun A., Zou Y., and Ge J. (2008). "Pro-resolution" and anti-inflammation, a role of RvE1 in anti-atherosclerosis and plaque stabilization. Med Hypotheses. 71:252–255.PubMedGoogle Scholar
  169. Xiao Y.F., and Li X.Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedGoogle Scholar
  170. Yamashima T. (2008). A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory. Prog. Neurobiol. 84:105–115.PubMedGoogle Scholar
  171. Yeo, J.F., Ong, W.Y., Ling, S.F., and Farooqui, A.A (2004). Intracerebroventricular injections of phospholipase A2 inhibitors modulate allodynia after facial carrageenan injections in mice. Pain 112: 148–155.PubMedGoogle Scholar
  172. Yoneda H., Shirao S., Kurokawa T., Fujisawa H., Kato S., and Suzuki M. (2008). Does eicosapentaenoic acid (EPA) inhibit cerebral vasospasm in patients after aneurysmal subarachnoid hemorrhage? Acta Neurol. Scand. 118:54–59.PubMedGoogle Scholar
  173. Young C., Gean P.W., Wu S.P., Lin C.H., and Shen Y.Z. (1998). Cancellation of low-frequency stimulation-induced long-term depression by docosahexaenoic acid in the rat hippocampus. Neurosci. Lett. 247:198–200.PubMedGoogle Scholar
  174. Young G., and Conquer J. (2005). Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr. Dev. 45:1–28.PubMedGoogle Scholar
  175. Yu, C.C., Mamchak, A.A., and DeFranco, A.L. (2003). Signaling mutations and autoimmunity. Curr. Dir. Autoimmun. 6:61–88.PubMedGoogle Scholar
  176. Yusufi AN., Cheng J., Thompson M.A., Walker H.J., Gray C.E., Warner G.M., and Grande J.P. (2003). Differential effects of low-dose docosahexaenoic acid and eicosapentaenoic acid on the regulation of mitogenic signaling pathways in mesangial cells. J. Lab. Clin. Med. 141:318–329.PubMedGoogle Scholar
  177. Zand H., Rahimipour A., Salimi S., and Shafiee M. (2008). Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-γ activation and NF-κB suppression. Mol. Cell. Biochem. 317:113–120.PubMedGoogle Scholar
  178. Zhao Y., Joshi-Barve S., Barve S., and Chen L.H. (2004). Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J. Am. Coll. Nutr. 23:71–78.PubMedGoogle Scholar
  179. Zhao Y., and Chen L.H. (2005). Eicosapentaenoic acid prevents lipopolysaccharide-stimulated DNA binding of activator protein-1 and c-Jun N-terminal kinase activity. J Nutr Biochem. 16:78–84.PubMedGoogle Scholar
  180. Zhao S., Jia L., Gao P., Li Q., Lu X., and Xu G. (2008). Study on the effect of eicosapentaenoic acid on phospholipids composition in membrane microdomains of tight junctions of epithelial cells by liquid chromatography/electrospray mass spectrometry. J. Pharm. Biomed. Anal. 47:343–350.PubMedGoogle Scholar
  181. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.PubMedGoogle Scholar
  182. Zucker R.S. (1989). Short-term synaptic plasticity. Annu. Rev. Neurosci. 12:13–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations