Status and Potential Therapeutic Importance of n–3 Fatty Acids in Other Neural and Non-neural Diseases

  • Akhlaq A. Farooqui

n–3 and n–6 fatty acids are the major families of PUFA that are components of the human diet. After ingestion, both n–3 and n–6 fatty acids are distributed to every cell in the body where they are actively involved in many physiological processes, including modulation of cardiovascular, immune, hormonal, metabolic, neuronal, and visual functions (Farooqui, 2009). At the cellular level, these fatty acids are incorporated in cellular membranes glycerophospholipids. The interaction of agonists with various receptors results in activation of isoforms of phospholipases A2 and the release of n–3 and n–6 fatty acids. n–3 and n–6 fatty acids and their enzymically oxidized products (docosanoids and eicosanoids) act as intracellular signaling and participate in the regulation of gene expression (Farooqui, 2009).


Systemic Lupus Erythematosus Experimental Autoimmune Encephalomyelitis Cystic Fibrosis Transmembrane Conductance Regulator Cystic Fibrosis Patient Retinitis Pigmentosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Turkmani M.R., Freedman S.D., and Laposata M. (2007). Fatty acid alterations and n-3 fatty acid supplementation in cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids 77:309–318.CrossRefGoogle Scholar
  2. Al-Turkmani M.R., Andersson C., Alturmani R., Katrangi W., Cluette-Braon J.E., Freedman S.D., and Laposata M. (2008). A mechanism accounting for the low cellular level of linoleic acid in cystic fibrosis and its reversal by DHA. J. Lipid Res. 49:1946–1954.PubMedCrossRefGoogle Scholar
  3. Anderson R.E., Alvarez R.A., Acland G., and Aguirre G.D. (1999). A hypothesis to explain the reduced blood levels of docosahexaenoic acid in inherited retinal degenerations caused by mutations in genes encoding retina-specific proteins. Lipids 34(Suppl.):S235–S237.PubMedCrossRefGoogle Scholar
  4. Anderson R.E., Maude M.B., McClellan M., Mathes M.T., Yasumura D., and LaVail M.M. (2002). Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358.Google Scholar
  5. Ardoin S.P., and Pisetsky D.S. (2008). Developments in the scientific understanding of lupus. Arthritis Res. Ther. 10:218–220.PubMedCrossRefGoogle Scholar
  6. Barnes P.J. (2004). Mediators of chronic obstructive pulmonary disease. Pharm. Rev. 56:515–548.PubMedCrossRefGoogle Scholar
  7. Bate C., Tayebi M., Diomede L., Salmona M., and Williams A. (2008a). Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells. BMC Biol. 6:39.PubMedCrossRefGoogle Scholar
  8. Bate C., Tayebi M., and Williams A. (2008b). Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2 activation. BMC Biol. 6:8.PubMedCrossRefGoogle Scholar
  9. Bate C., Marshall V., Colombo L., Diomede L., Salmona M., and Williams A. (2008c). Docosahexaenoic and eicosapentaenoic acids increase neuronal death in response to HuPrP82-146 and Aβ 1-42. Neuropharmacology 54:934–943.PubMedCrossRefGoogle Scholar
  10. Berger T., and Reindl M. (2007). Multiple sclerosis: disease biomarkers as indicated by pathophysiology. J. Neurol. Sci. 259:21–26.PubMedCrossRefGoogle Scholar
  11. Belluzzi A., Brignola C., Campieri M., Pera A., Boschi S., and Miglioli M. (1996). Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. N. Eng. J. Med. 334:1557–1560.CrossRefGoogle Scholar
  12. Berson E.L., Rosner B., Sandberg M.A., Weigel-DiFranco C., Moser A., Brockhurst R.J., Hayes K.C., Johnson C.A., Anderson E.J., Gaudio A.R., Willett W.C., and Schaefer E.J. (2004). Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch. Ophthalmol. 122:1306–1314.PubMedCrossRefGoogle Scholar
  13. Brites P., Mooyer P.A., El Mrabet L., Waterham H.R., and Wanders R.J. (2008). Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain [Epub ahead of print].Google Scholar
  14. Calder P.C. (2002). Dietary modification of inflammation with lipids. Proc. Nutr. Soc. 61:345–358.PubMedCrossRefGoogle Scholar
  15. Calder P.C. (2006a). n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83:1505S–1519S.PubMedGoogle Scholar
  16. Calder P.C. (2006b). Use of fish oil in parenteral nutrition: rationale and reality. Proc. Nutr. Soc. 65:264–277.PubMedCrossRefGoogle Scholar
  17. Calder P.C. (2008a). Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on 'Nutrition and autoimmune disease' PUFA, inflammatory processes and rheumatoid arthritis. Proc. Nutr. Soc. 67:409–418.PubMedCrossRefGoogle Scholar
  18. Calder P.C. (2008b). Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 52:885–897.PubMedCrossRefGoogle Scholar
  19. Chen A.H. Innis S.M., Davidson A.G.F., and James S.J. (2005). Phosphatidylcholine and lysophosphatidylcholine excretion is increased in children with cystic fibrosis and is associated with plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine. Am. J. Clin. Nutr. 81:686–691.PubMedGoogle Scholar
  20. Christophe A., Robberecht E., De Baets F., and Franckx H. (1992). Increase of long chain omega-3 fatty acids in the major serum lipid classes of patients with cystic fibrosis. Ann Nutr. Metab. 36:304–312.PubMedCrossRefGoogle Scholar
  21. Chung K.F. (2005). Inflammatory mediators in chronic obstructive pulmonary disease. Curr. Drug Target Inflamm. Allergy 4:619–625.CrossRefGoogle Scholar
  22. Cleland L.G., James M.J., and Proudman S.M. (2003). The role of fish oils in the treatment of rheumatoid arthritis. Drugs 63:845–853.PubMedCrossRefGoogle Scholar
  23. Conese M., Copreni E., Di Gioia S., De Rinaldis P., and Fumarulo R. (2003). Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J. Cyst. Fibros. 2:129–135.PubMedCrossRefGoogle Scholar
  24. Connor K.M., SanGiovanni J.P., Lofqvist C., Aderman C.M., Chen J., Higuchi A., Hong S., Pravda E.A., Majchrzak S., Carper D., Hellstrom A., Kang J.X., Chew E.Y., Salem N. Jr., Serhan C.N., and Smith L.E. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13:868–873.PubMedCrossRefGoogle Scholar
  25. Curtis C.L., Rees S.G., Harwood J.L., Caterson B., and Dent C.M. (2003). The effect of n-3 (omega-3) polyunsaturated fatty acids on degenerative joint diseases. Agro. Food Industry Hi-Tech. 14:22–25.Google Scholar
  26. Das U.N. (1994). Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Protaglandin Leukot. Essent. Fatty Acids 51:207–213.CrossRefGoogle Scholar
  27. Das U.N. (2008). Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease – but how and why? Prostaglandins Leukot Essent Fatty Acids. 78:11–19.PubMedCrossRefGoogle Scholar
  28. DeArmond S.J., and Prusiner S.B. (2003). Perspectives on prion biology, prion disease pathogenesis, and pharmacologic approaches to treatment. Clin. Lab. Med. 23:1–41.PubMedCrossRefGoogle Scholar
  29. De Craemer D., Pauwels M., and Van den Branden C. (1996). Dietary docosahexaenoic acid has little effect on peroxisomes in healthy mice. Lipids 31:1157–1167.PubMedCrossRefGoogle Scholar
  30. Delbosc S., Glorian M., Le Port A.S., Béréziat G., and réani M., and Limon I. (2008). The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/-9. Am. J. Pathol. 172:1430–1440.PubMedCrossRefGoogle Scholar
  31. Devlin A.M., Singh R., Wade R.E., Innis S.M., Bottiglieri T., and Lentz S.R. (2007). Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia. J. Biol. Chem. 282:37082–37090.PubMedCrossRefGoogle Scholar
  32. De Vizia B., Raia V., Spano C., Pavlidis C., Coruzzo A., and Alessio M. (2003). Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. JPEN J. Parenter Enteral. Nutr. 27:52–57.PubMedCrossRefGoogle Scholar
  33. Diamond P., McGinty A., Sugrue D., Brady H.R., and Godson C. (1999). Regulation of leukocyte trafficking by lipoxins. Clin. Chem. Lab. Med. 37:293–297.PubMedCrossRefGoogle Scholar
  34. Duffy E.M., Meenagh G.K., MvMillan S.A., Strain J.J., Hannigan B.M., and Bell A.C. (2004). The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J. Rheumatol. 31:1551–1556.PubMedGoogle Scholar
  35. Ergas D., Eilat E., Mendlivic S., and Sthoeger Z.M. (2002). n-3 fatty acids and the immune system in autoimmunity. Isr. Med. Assoc. J. 4:34–38.PubMedGoogle Scholar
  36. Farinotti M., Simi S., Di Pietrantonj C., McDowell N., Brait L., Lupo D., and Filippini G. (2007). Dietary interventions for multiple sclerosis. Cochrane Database Sys. Rev. CD004192.Google Scholar
  37. Farooqui A.A., and Horrocks L.A. (2007) Glycerophospholipids in Brain. Springer, New York.PubMedCrossRefGoogle Scholar
  38. Farooqui A.A., Horrocks L.A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedCrossRefGoogle Scholar
  39. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.CrossRefGoogle Scholar
  40. Faust P.L., Su H.M., Moser A., and Moser H.W. (2001). The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction. J. Mol. Neurosci. 16:289–297.PubMedCrossRefGoogle Scholar
  41. Fernandes G., Bhattacharya A., Rahman M., Zaman K., and Banu J. (2008). Effects of n-3 fatty acids on autoimmunity and osteoporosis. Front Biosci. 13:4015–4020.PubMedCrossRefGoogle Scholar
  42. Findlay D.M., and Haynes D.R. (2005). Mechanisms of bone loss in rheumatoid arthritis. Mod. Rheumatol. 15:232–240.PubMedCrossRefGoogle Scholar
  43. Freedman S.D., Katz M.H., Parker E.M., Laposata M., Urman M.Y., and Alvarez J.G. (1999). A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr-/- mice. Proc. Natl. Acad. Sci. USA 96:13995–14000.PubMedCrossRefGoogle Scholar
  44. Freedman S.D., Shea J.C., Blanco P.G., and Alvarez J.G. (2000). Fatty acids in cystic fibrosis. Curr. Opin. Pulm. Med. 6:530–532.PubMedCrossRefGoogle Scholar
  45. Fritsche K. (2006). Fatty acids as modulators of the immune response. Annu. Rev. Nutr. 26:45–73.PubMedCrossRefGoogle Scholar
  46. Gao L., Wang J., Sekhar K.R., Yin H., Yared N.F., Schneider S.N., Sasi S., Dalton T.P., anderson M.E., Chan J.Y., Morrow J.D., and Freeman M.L. (2007). Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J. Biol. Chem. 282:2529–2537.PubMedCrossRefGoogle Scholar
  47. Gilroy D.W., Newson J., Sawmynaden P., Willoughby D.A., and Croxtall J.D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.PubMedCrossRefGoogle Scholar
  48. Griffin B.A. (2008). How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study. Curr. Opin. Lipidol. 19:57–62.PubMedCrossRefGoogle Scholar
  49. Grossman A., Zeiler B., and Sapirstein V. (2003). Prion protein interactions with nucleic acid: possible models for prion disease and prion function. Neurochem. Res. 28:955–963.PubMedCrossRefGoogle Scholar
  50. Harris W. (2007). Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217–223.PubMedCrossRefGoogle Scholar
  51. Harris W.S. (2008). The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87:1997S–2002S.PubMedGoogle Scholar
  52. Hartong D.T., Berson E.L., and Dryia T.P. (2006). Retinitis pigmentosa. Lancet 368:1795–1809.PubMedCrossRefGoogle Scholar
  53. Hein S., Schonfeld P., Kahlert S., and Reiser G. (2008). Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum. Mol. Genet. 17:1750–1761.PubMedCrossRefGoogle Scholar
  54. Hims M.M., Diager S.P., and Inglehearn C.F. (2003). Retinitis pigmentosa: genes, proteins and prospects. Dev. Ophthalmol. 37:109–125.PubMedCrossRefGoogle Scholar
  55. Hodge W.G., Barnes D., Schachter H.M., Pan Y.I., Lowcock E.C., Zhang L., Sampson M., Morrison A., Tran K., Miguelez M., and Lewin G. (2006). The evidence for efficacy of omega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can J. Ophthalmol. 41:481–490.PubMedGoogle Scholar
  56. Horrocks L.A., and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J.N., and Ansell G.B. (eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4, pp. 51–93. Elsevier Biomedical Press, Amsterdam.CrossRefGoogle Scholar
  57. Horrocks L.A., and Yeo Y.K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.PubMedCrossRefGoogle Scholar
  58. Infante J.P., and Huszagh V.A. (2001). Zellweger syndrome knockout mouse models challenge putative peroxisomal β-oxidation involvement in docosahexaenoic acid (22:6n-3) biosynthesis. Mol. Genet. Metab. 72:1–7.PubMedCrossRefGoogle Scholar
  59. Innis S.M., and Hasman D. (2006). Evidence of choline depletion in children with cystic fibrosis associated with reduced betaine dependent remethylation of homocysteine. J. Nutr. 136:2226–2231.PubMedGoogle Scholar
  60. Innis S.M., Davidson A.G.F., Melynk S., and James S.J. (2007). Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis. Am. J. Clin. Nutr. 85:702–708.PubMedGoogle Scholar
  61. Innis S.M., and Davidson A.G. (2008). Cystic fibrosis and nutrition: linking phospholipids and essential fatty acids with thiol metabolism. Annu. Rev. Nutr. 28:55–72.PubMedCrossRefGoogle Scholar
  62. Jacobson S.G., Cideciyan A.V., Aleman T.S., Sumaroka A., Roman A.J., Gardner L.M., Prosser H.M., Mishra M., Bech-Hansen N.T., Herrera W., Schwartz S.B., Liu X.Z., Kimberling W.J., Steel K.P., and Williams D.S. (2008). Usher syndromes due to MYO7A, PCDH15, USH2A or GPR98 mutations share retinal disease mechanism. Hum. Mol. Genet. 17:2405–2415.PubMedCrossRefGoogle Scholar
  63. Janssen A., Baes M., Gressens P., Mannaerts G.P., Declercq P., and Van Veldhoven P.P. (2000). Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab. Invest. 80:31–35.PubMedCrossRefGoogle Scholar
  64. Jeffrey M., Goodsir C.M., Bruce M.E., McBride P.A., Scott J.R., and Halliday W.G. (1992). Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci. Lett. 147:106–109.PubMedCrossRefGoogle Scholar
  65. Johnson E.J., and Schaefer E.J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. Am. J. Clin. Nutr. 83(6 Suppl):1494S–1498S.PubMedGoogle Scholar
  66. Katz D.P., Manner T., Furst P., and Askanazi J. (1996). The use of an intravenous fish oil emulsion enriched with omega-3 fatty acids in patients with cystic fibrosis. Nutrition 12:334–339.PubMedCrossRefGoogle Scholar
  67. Khan M., Pahan K., Singh A.K., and Singh I. (1998). Cytokine-induced accumulation of very long-chain fatty acids in rat C6 glial cells: implication for X-adrenoleukodystrophy. J. Neurochem. 71:78–87.PubMedCrossRefGoogle Scholar
  68. Khan M., Singh J., and Singh I. (2008). Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. J. Neurochem. 106:1766–1779.PubMedGoogle Scholar
  69. Kobayashi S., Momohara S., Kamatani N., and Okamoto H. (2008). Molecular aspects of rheumatoid arthritis: role of environmental factors. FASEB J. 275:4456–4462.Google Scholar
  70. Kompauer I., Demmelmair H., Koletzko B., Bolte G., Linseisen J., and Heinrich J. (2008). Association of fatty acids in serum phospholipids with lung function and bronchial hyperresponsiveness in adults. Eur. J. Epidemiol. 23:175–190.PubMedCrossRefGoogle Scholar
  71. Krause C., Rosewich H., Thanos M., and Gartner J. (2006). Identification of novel mutations in PEX2, PEX6, PEX10, PEX12, and PEX13 in Zellweger spectrum patients. Human Mutat. 27:1157–1158.CrossRefGoogle Scholar
  72. Kremer J.M. (2000). N-3 fatty acids supplements in rheumatoid arthritis. Am. J. Clin. Nutr. 71(Suppl.):349S–351S.PubMedGoogle Scholar
  73. Leaf A. (2007). Omega-3 fatty acids and prevention of arrhythmias. Curr. Opin. Lipidol. 18:31–34.PubMedCrossRefGoogle Scholar
  74. Leeb B.F., Sautner J., Andel I., and Rintelen B. (2006). Intravenous application of omega-3 fatty acids in patients with active rheumatoid arthritis. The ORA-1 trial. An open pilot study. Lipids 41:29–34.Google Scholar
  75. Li D., Mann N.J., and Sinclair A.J. (2006). A significant inverse relationship between concentrations of plasma homocysteine and phospholipid docosahexaenoic acid in healthy male subjects. Lipids 41:85–89.PubMedCrossRefGoogle Scholar
  76. Li D., Yu X.M., Xie H.B., Zhang Y.H., Wang Q., Zhou X.Q., Yu P., and Wang L.J. (2007). Platelet phospholipid n-3 PUFA negatively associated with plasma homocysteine in middle-aged and geriatric hyperlipaemia patients. Prostaglandins Leukot. Essent. Fatty Acids. 76:293–297.CrossRefGoogle Scholar
  77. Li Q., Zhang Q., Wang M., Zhao S., Xu G., and Li J. (2008). n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines. Mol. Immunol. 45:1356–1365.PubMedCrossRefGoogle Scholar
  78. Louis E. (2001). The immuno-inflammatory reaction in Crohn's disease and ulcerative colitis: characterisation, genetics and clinical application. Focus on TNF-α. Acta Gastroenterol. Belg. 64:1–5.PubMedGoogle Scholar
  79. Martinez M., and Mougan I. (1999). Fatty acid composition of brain glycerophospholipids in peroxisomal disorders. Lipids 34:733–740.PubMedCrossRefGoogle Scholar
  80. Martínez M., Vazquez E., Garcia-silva M.T., Beltran J.M., Castello F., Pineda M., and Mougan I. (1999). Treatment of generalized peroxisomal disorders with docosahexaenoic acid ethyl ether. Rev. Neurol. 28(Suppl. I):S59–S64.PubMedGoogle Scholar
  81. Martínez M., Vázquez E., García-Silva M.T., Manzanares J., Bertran J.M., Castelló F., and Mougan I. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am. J. Clin. Nutr. 71:376S–385S.PubMedGoogle Scholar
  82. Martínez M. (2001). Restoring the DHA levels in the brains of Zellweger patients. J. Mol. Neurosci. 16:309–316.PubMedCrossRefGoogle Scholar
  83. Matsuyama W., Mitsuyama H., Watanabe M., Oonakahara K., Higashimoto I., Osame M., and Arimura K. (2005). Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest 128:3817–3827.PubMedCrossRefGoogle Scholar
  84. Matute C., and Perez-Cerda F. (2005). Multiple sclerosis: novel perspectives on newly forming lesions. Trend Neurosci. 28:173–175.PubMedCrossRefGoogle Scholar
  85. Mayser P., Mrowietz U., Arenberger P., Bartak P., Buchvald J., Christophers E., Jablonska S., Salmhofer W., Schill W.B., Krämer H.J., Schlotzer E., Mayer K., Seeger W., and Grimminger F. (1998). Omega-3 fatty acid-based lipid infusion in patients with chronic plaque psoriasis: results of a double-blind, randomized, placebo-controlled, multicenter trial. J. Am. Acad. Dermatol. 38:539–547.PubMedCrossRefGoogle Scholar
  86. Mayser P., Grimm H., and Grimminger F. (2002a). n-3 fatty acids in psoriasis. Br. J. Nutr. 87(Suppl. 1):S77–S82.PubMedCrossRefGoogle Scholar
  87. Mayser P., Mayer K., Mahloudjian M., Benzing S., Krämer H.J., Schill W.B., Seeger W., and Grimminger F. (2002b). A double-blind, randomized, placebo-controlled trial of n-3 versus n-6 fatty acid-based lipid infusion in atopic dermatitis. JPEN J. Parenter Enteral. Nutr. 26:151–158.PubMedCrossRefGoogle Scholar
  88. McGuinness M.C., and Smith K.D. (1999). Cerebral inflammation in X-linked adrenoleukodystrophy. Arch. Immunol. Ther. Exp. 47:281–287.Google Scholar
  89. Miki M., and Satoh K. (1999). Genetic risk factors for chronic obstructive pulmonary disease (COPD). Nippon Rinsho. 57:1954–1958.PubMedGoogle Scholar
  90. Morita M. (2007). Adrenoleukodystrophy: molecular pathogenesis and development of therapeutic agents. Yakugaku Zasshi 127:1059–1064.PubMedCrossRefGoogle Scholar
  91. Mills S.C., Windsor A.C., and Knight S.C. (2005). The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin. Exp. Immunol. 142:216–228.PubMedCrossRefGoogle Scholar
  92. Namkung W., Lee A., Ahn W., Han W., Kwon S.W., Ahn D.S., Kim K.H., and Lee M.G. (2003). Ca2+ activates cystic fibrosis transmembrane conductance regulator- and Cl- -dependent HCO3 transport in pancreatic duct cells. J. Biol. Chem. 278:200–207.PubMedCrossRefGoogle Scholar
  93. Nightingale S., Woo E., Smith A.D., French J.M., Gale M.M., Sinclair H.M., Bates D., and Shaw D.A. (1990). Red blood cell and adipose tissue fatty acids in mild inactive multiple sclerosis. Acta Neurol Scand. 82:43–50.PubMedCrossRefGoogle Scholar
  94. Nishimura M. (2003). Role of genetic factors in the development of COPD. Nippon Rinsho. 61: 2095–2100.PubMedGoogle Scholar
  95. Nordvik I., Myhr K.M., Nyland H., and Bjerve K.S. (2000). Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol. Scand. 102:143–149.PubMedCrossRefGoogle Scholar
  96. Okamoto H., Cujec T.P., Yamanaka H., and Kamatani W. (2008). Molecular aspects of rheumatoid arthritis: role of transcription factors. FASEB J. 275:4463–4470.Google Scholar
  97. Oorthuys J.W., Loewer-Sieger D.H., Schutgens R.B., Wanders R.J., Heymans H.S., and Bleeker-Wagemakers E.M. (1987). Peroxisomal dysfunction in chondrodysplasia punctata, rhizomelic type. Ophthalmic Paediatr. Genet. 8:183–185.PubMedCrossRefGoogle Scholar
  98. Paintlia A.S., Gilg A.G., Khan M., Singh A.K., Barbosa E., and Singh I. (2003). Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood X-ALD: implications for potential therapies. Neurobiol. Dis. 14:425–439.PubMedCrossRefGoogle Scholar
  99. Parkinson J.F. (2006). Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm. Allergy Drug Targets 5:91–106.PubMedCrossRefGoogle Scholar
  100. Pisetsky D.S. (1992). Anti-DNA antibodies are the serologic hallmark of systemic lupus erythematosus and important markers for diagnosis and prognosis. Rheum. Dis. Clin. North Am. 18:437–454.PubMedGoogle Scholar
  101. Pisetsky D.S. (2008). The role of innate immunity in the induction of autoimmunity. Autoimmun. Rev. 8:69–72.PubMedCrossRefGoogle Scholar
  102. Pizurki L., Morris M.A., Chanson M., Solomon M., Pavirani A., Bouchardy I., and Suter S. (2000). Cystic fibrosis transmembrane conductance regulator does not affect neutrophil migration across cystic fibrosis airway epithelial monolayers. Am. J. Pathol. 156:1407–1416.PubMedCrossRefGoogle Scholar
  103. Planas M., Alvarez J., Garcia-Peris P.A., de la Cuerda C., de Lucas P., Castella M., Canseco F., and Reyes L. (2005). Nutritional support and quality of life in stable chronic obstructive pulmonary disease (COPD) patients. Clin. Nutr. 62:783–791.Google Scholar
  104. Prusiner S.B. (2001). Shattuck lecture – neurodegenerative diseases and prions. N. Engl. J. Med. 344:1516–1526.PubMedCrossRefGoogle Scholar
  105. Rahman M.M., Bhattacharya A., and Fernandes G. (2008). Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid. J. Cell. Physiol. 214:201–209.PubMedCrossRefGoogle Scholar
  106. Raymond C.V. (1999). Peroxisomal disorders. Curr. Opin. Pediatr. 11:572–576.PubMedCrossRefGoogle Scholar
  107. Reddy M.M., and Quinton P.M. (2001). Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances. JOP 2(4 Suppl):212–218.PubMedGoogle Scholar
  108. Reindl M., Khalil M., and Berger T. (2006). Antibodies as biological markers for pathophysiological processes in MS. J. Neuroimmunol. 180:50–62.PubMedCrossRefGoogle Scholar
  109. Romano C., Cucchiara S., Barabino A., Annese V., and Sferlazzas C. (2005). Usefulness of omega-3 fatty acid supplementation in addition to mesalazine in maintaining remission in pediatric Crohn's disease: a double-blind, randomized, placebo-controlled study. World J. Gastroenterol. 11:7118–7121.PubMedGoogle Scholar
  110. SanGiovanni J.P., Chew E.Y., Clemons T.E., Davis M.D., Ferris F.L. 3rd, Gensler G.R., Kurinij N., Lindblad A., Milton R.C., Seddon J.M., Sperduto R.D., and Age-Related Eye Disease Study Research Group. (2007). The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch. Ophthalmol. 125:671–679.PubMedCrossRefGoogle Scholar
  111. Serhan C.N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedCrossRefGoogle Scholar
  112. Serhan C.N., and Chiang N. (2008). Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br. J. Pharmacol. 153(Suppl. 1):S200–S215.PubMedGoogle Scholar
  113. Schaefer E., Bongard V., Beiser A.S., Lamon-Fava S., Robins S.J., Au R., Tucker K.L., kyle D.J., Wilson P.W., and Wolf P.A. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol. 63:1545–1550.PubMedCrossRefGoogle Scholar
  114. Schmidt C., and Stallmach A. (2005). Etiology and pathogenesis of inflammatory bowel disease. Minerva Gastroenterol. Dietol. 51:127–145.PubMedGoogle Scholar
  115. Schols (2003). Nutritional modulation as part of the integrated management of chronic obstructive pulmonary disease. Proc. Nutr. Soc. 62:783–791.PubMedCrossRefGoogle Scholar
  116. Schwartz J. (2000). Role of polyunsaturated fatty acids in lung disease. Am. J. Clin. Nutr. 71(Suppl. 1):393S–396S.PubMedGoogle Scholar
  117. Selley M.L. (2007). A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer's disease. Neurobiol. Aging 28:1834–1839.PubMedCrossRefGoogle Scholar
  118. Shahar E., Folsom A.R., Melnick S.L., Tockman M.S., Comstock G.W., Gennaro V., Higgins M.W., Sorlie P.D., Ko W.J., Szklo M., and Atherosclerosis Risk in Communities Study Investigators. (1994). Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis Risk in Communities Study Investigators. N. Engl. J. Med. 331:228–233.Google Scholar
  119. Shahar E., Boland L.L. Folsom A.R., Tockman M.S., McGovern P.G., and Eckfeldt J.H. (1999). Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. The Atherosclerosis Risk in Communities Study Investigators. Am. J. Respir. Crit. Care Med. 159:1780–1785.PubMedGoogle Scholar
  120. Shahar E., Folsom A.R., Sandra L. Melnick S.L., Melvyn S. Tockman M.S., Comstock G.W., Gennaro, V., Higgins, M.W., Sorlie, P.D., Ko, W.-J., Szklo M., and For the Atherosclerosis Risk in Communities Study Investigators. (2008). Dietary n-3 Polyunsaturated acids and smoking-related chronic obstructive pulmonary disease. Am. J. Epidemiol. 168:796–801.PubMedCrossRefGoogle Scholar
  121. Shimozawa N. (2007). Molecular and clinical aspects of peroxisomal diseases. J. Inhert. Metab. Dis. 30:193–197.CrossRefGoogle Scholar
  122. Simopoulus A.P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutri. 21:495–505.Google Scholar
  123. Simopoulos A.P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233:674–688.CrossRefGoogle Scholar
  124. Singh I., Paintlia A.S., Khan M., Stanislaus R., Paintlia M.K., Haq E., Singh A.K., and Contreras M.A. (2004). Impaired peroxisomal function in the central nervous system with inflammatory disease of experimental autoimmune encephalomyelitis animals and protection by lovastatin treatment. Brain Res. 1022:1–11.PubMedCrossRefGoogle Scholar
  125. Spurek M., Taylor-Gjevre R., Van Uum S., and Khandwala H.M. (2004). Adrenomyeloneuropathy as a cause of primary adrenal insufficiency and spastic paraparesis. CMAJ 171:1073–1077.PubMedCrossRefGoogle Scholar
  126. Stamp L., James M.J., and Cleland L.G. (2005). Diet and rheumatoid arthritis: a review of the literature. Semin. Arthritis Rheum. 35:77–94.PubMedCrossRefGoogle Scholar
  127. Strandvik B., Gronowitz E., Enlund F., Martinsson T., and Wahlstrom J. (2001). Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J. Pediatr. 139:650–655.PubMedCrossRefGoogle Scholar
  128. Steinberg S., Jones R., Tiffany C., and Moser A. (2008). Investigational methods for peroxisomal disorders. Curr. Protoc. Hum. Genet. 58:17.6.1–17.6.23.Google Scholar
  129. Steinkamp G. (2003). COPD, the systemic disease: nutrition – an underestimated and unresolved problem. Pneumology 57:681–689.CrossRefGoogle Scholar
  130. Sun D., Krishnan A., Zaman K., Lawrence R., Bhattacharya A., and Fernandes G. (2003). Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J. Bone Miner. Res. 18:1206–1216.PubMedCrossRefGoogle Scholar
  131. Tabary O., Corvol H., Boncoeur E., Chadelat K., Fitting C., Cavaillon J.M., Clément A., and Jacquot J. (2006). Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L588–L596.PubMedCrossRefGoogle Scholar
  132. Thomas D.R. (2002). Dietary prescription for chronic obstructive pulmonary disease. Clin. Geriatr. Med. 18:835–839.PubMedCrossRefGoogle Scholar
  133. Trebble T.M., Arden N.K., Wootton S.A., Calder P.C., Mullee M.A., Fine D.R., and Stroud M.A. (2004). Fish oil and antioxidants alter the composition and function of circulating mononuclear cells in Crohn disease. Am. J. Clin. Nutr. 80:1137–1144.PubMedGoogle Scholar
  134. Trebble T.M., Stroud M.A., Wootton S.A., Calder P.C., Fine D.R., Mullee M.A., Moniz C., and Arden N.K. (2005). High-dose fish oil and antioxidants in Crohn's disease and the response of bone turnover: a randomised controlled trial. Br. J. Nutr. 94:253–261.PubMedCrossRefGoogle Scholar
  135. Tsao B.P. (2004). Update on human systemic lupus erythematosus genetics. Curr. Opin. Reumatol. 16:513–521.CrossRefGoogle Scholar
  136. Tsoumakidou M., Demedts I.K., Brusselle G.G., and Jeffery P.K. (2008). Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am. J. Respir. Crit. Care Med. 177:1180–1186.PubMedCrossRefGoogle Scholar
  137. Turner D., Zlotkin S.H., Shah P.S., and Griffiths A.M. (2007). Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn's disease. Cochrane Database Sys. Rev. CD006320.Google Scholar
  138. Tziomalos K., Athyros V.G., and Mikhailidis D.P. (2007). Fish oils and vascular disease prevention: an update. Curr. Med. Chem. 14:2622–2628.PubMedCrossRefGoogle Scholar
  139. Van Biervliet S., Devos M., Delhaye T., Van Biervliet J.P., Robberecht E., and Christophe A. (2008). Oral DHA supplementation in DeltaF508 homozygous cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids. 78:109–115.PubMedCrossRefGoogle Scholar
  140. Van den Branden C., De Craemer D., Pauwels M., and Vamecq J. (1995). Peroxisomes in mice fed a diet supplemented with low doses of fish oil. Lipids 30:701–705.PubMedCrossRefGoogle Scholar
  141. Van Veldhoven P.P., and Mannaerts G.P. (1999). Role and organization of peroxisomal beta-oxidation. Adv. Exp. Med. Biol. 466:261–272.PubMedCrossRefGoogle Scholar
  142. Vassallo R., Kroening P.R., Parambil J., and Kita H. (2008). Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses. Mol. Immunol. 45:3321–3329.PubMedCrossRefGoogle Scholar
  143. Watt D.A., and Satsangi J. (2002). The genetic jigsaw of inflammatory bowel disease. Gut 50(Suppl. 3):III31–36.CrossRefGoogle Scholar
  144. Wong K.W. (2005). Clinical efficacy of n-3 fatty acid supplementation in patients with asthma. J. Am. Diet. Assoc. 105:98–105.PubMedCrossRefGoogle Scholar
  145. Wong M., and Tsao, B.P. (2006). Current topics in human SLE genetics. Springer Semin. Immunopathol. 28:97–107.PubMedCrossRefGoogle Scholar
  146. Wright S.A., O'Prey F.M., McHenry M.T., Leahey W.J., Devine A.B., Duffy E.M., Johnston D.G., Finch M.B., Bell A.L., and McVeigh G.E. (2008). A randomised interventional trial of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 67:841–848.PubMedCrossRefGoogle Scholar
  147. Zeng W., Lee M.G., Yan M., Diaz J., Benjamin I., Marino C.R., Kopito R., Freedman S., Cotton C., Muallem S., and Thomas R. (1997). Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am. J. Physiol. 273:C442–C455.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations