Advertisement

Fish Oil and Importance of Its Ingredients in Human Diet

  • Akhlaq A. Farooqui
Chapter

Interest in the potential health benefits of fish oil increased immensely after epidemiological studies indicated a remarkably low incidence of death from ischemic heart disease in Greenland Eskimos, despite their consumption of a high-fat and cholesterol-enriched diet (Bang et al., 1976). Low incidences of ischemic heart disease have also been reported in coastal-dwelling Turkish and Japanese populations consuming fish and fish constituent-enriched diet. Soon it became apparent that fatty fish and marine oils, which were major components of the Eskimo, coastal Turkish, and Japanese diets, were responsible for the low incidence of ischemic heart disease (Kagawa et al., 1982). These studies are supported by hard data from several prevential studies such as GISSI Prevenzione, JELIS, DART, and RCT Trials, which indicated the usefulness of fish oil for the treatment of heart disease in patients (GISSI-Prevenzione investigators, 1999; Yokoyama et al., 2007; Burr et al., 1989; Nilsen et al., 2001; Bucher et al., 2002; Studer et al., 2005).

Keywords

Oleic Acid Sudden Cardiac Death Trans Fatty Acid Mediterranean Diet Human Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abeywardena M.Y., and Head R.J. (2001). Longchain n-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc. Res. 52:361–371.PubMedGoogle Scholar
  2. Akbar M., Calderon F., Wen Z.M., and Kim H.Y. (2005). Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.PubMedGoogle Scholar
  3. Albert C. (2004). Fish oil – an appetizing alternative to anti-arrhythmic drugs. The Lancet 363:1412–1413.Google Scholar
  4. André A., Juanéda P., Sébedio J.L., and Chardigny J.W. (2006). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.PubMedGoogle Scholar
  5. Archer, S.L., Green D., Chamberlain M., Dyer A.R., and Liu K. (1998). Association of dietary fish and n-3 fatty acid intake with hemostatic factors in the coronary artery risk development in young adults (CARDIA) study. Arterioscler. Thromb. Vasc. Biol. 18:1119–1123.PubMedGoogle Scholar
  6. Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N.A., and Serhan C.N. (2005a). Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201:713–722.PubMedGoogle Scholar
  7. Arita M., Yoshida M., Hong S., Tjonahen E., Glickman J.N., Petasis N.A., Blumberg R.S., and Serhan C.N. (2005b). Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 102:7671–7676.PubMedGoogle Scholar
  8. Arm H.P., Horton C.E., Nencia-Huerta J.M., House F., Eiser N.M., Clark T.J., Spur B.W., and Lee T.H. (1988). Effect of dietary supplementation with fish oil lipids on mild asthma. Thorax 43:84–92.PubMedGoogle Scholar
  9. Arnesen H. (2001). n-3 fatty acids and revascularization procedures. Lipids 36 Suppl:S103–S106.PubMedGoogle Scholar
  10. Artorburn L.M., Oken H.A., Hoffman J.P., Bailey-Hall E., Chung G., Rom D., Hamersley J., and McCarthy D. (2007). Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids. 42:1011–1024.Google Scholar
  11. Bang H.O., Dyerberg N., and Hjorne (1976). The composition of food consumed by Greenland Eskimos. Acta Med. Scand. 200:69–73.PubMedGoogle Scholar
  12. Bang H.O., and Dyerberg N. (1980). The bleeding tendency in Greenland Eskimos. Dan. Med. Bull. 27:202–205.PubMedGoogle Scholar
  13. Barceló-Coblijn G., Kitajka K., Puskás L.G., Högyes E., Zvara A., Hackler L., Jr., and Farkas T. (2003). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim. Biophys. Acta 1632:72–79.PubMedGoogle Scholar
  14. Bastianetto S., and Quirion R. (2004). Natural antioxidants and neurodegenerative diseases. Front Biosci. 9:3447–3452.PubMedGoogle Scholar
  15. Bays H.E. (2007). Safety considerations with omega-3 fatty acid therapy. Am. J. Cardiol. 99:35C–43C.PubMedGoogle Scholar
  16. Bays H. (2008). Rationale for prescription omega-3-acid ethyl ester therapy for hypertriglyceridemia: a primer for clinicians. Drugs Today (Barc). 44:205–246.Google Scholar
  17. Beauchamp G.K., Keast R.S., Morel D., Lin J., Pika J., Han O., Lee C.H., Smith A.B., and Breslin P.A. (2005). Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46.PubMedGoogle Scholar
  18. Bendini A., Cerretani L., Carras-Pancorbo A., Gomez-Caravaca A.M., Segura-Carretero A., Fernandez-Gitierrez A., and Lercker G. (2007). Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 12:1679–1719.PubMedGoogle Scholar
  19. Billman G.E., Kang J.X., and Leaf A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation 99:2452–2457.PubMedGoogle Scholar
  20. Bonanome A., and Grundy S.M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N. Eng. J. Med. 318:1244–1248.Google Scholar
  21. Brown S.B., Brown C.A., Crowell W.A., Barsanti J.A., Allen T., Cowell C., and Finco D.R. (1998). Beneficial effects of chronic administration of dietary ω-3 polyunsaturated fatty acids in dogs with renal insufficiency. J. Lab. Clin. Med. 131:447–455.PubMedGoogle Scholar
  22. Brown S.B., Brown C.A., Crowell W.A., Barsanti J.A., Kang C.W., Allen T., Cowell C., and Finco D.R. (2000). Effects of dietary polyunsaturated fatty acids supplementation in early renal insufficiency in dogs. J. Lab. Clin. Med. 135:275–286.PubMedGoogle Scholar
  23. Brunelleschi S., Bardelli C., Amoruso A., Gunella G., Leri F., Romani A., Malorni W., and Franconi F. (2007). Minor polar compounds extra-virgin olive oil extract (MPC-OOE) inhibits NF-kappa B translocation in human monocyte/macrophages. Pharmacol. Res. 56:542–549.PubMedGoogle Scholar
  24. Brunton S., and Collin N. (2007). Differentiating prescription omega-3-acid ethyl esters (P-OM3) from dietary-supplement omega-3 fatty acids. Curr. Med. Res. Opin. 23:1139–1145.PubMedGoogle Scholar
  25. Bu Y., Rho S., Kim M.Y., Lee O.H., Kim S.Y., Choi H., and Kim H. (2007). Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci. Lett. 414:218–2121.PubMedGoogle Scholar
  26. Bucher H.C., Hengstler P., Schindler C., and Meier G. (2002). N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am. J. Med. 112:298–304.PubMedGoogle Scholar
  27. Buiarelli F., Di Berardino S., Coccioli F., Jasionowska R., and Russo M.V. (2004). Determination of phenolic acids in olive oil by capillary electrophoresis. Ann. Chim. 94:699–705.PubMedGoogle Scholar
  28. Burr M.L., Fehily A.M., Gilbert J.F., Rogers S., Holliday R.M., Sweetnam P.M., Elwood P.C., and Deadman N.M. (1989). Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2(8666):757–761.PubMedGoogle Scholar
  29. Butos R., Romo L., Yanez K., Diaz G., and Romo C. (2003). Oxidative stability of carotenoid pigments and polyunsaturated fatty acids in microparticulate diets containing krill oil for nutrition of marine fish larvae. J. Food Eng. 56:289–293.Google Scholar
  30. Calderon F., and Kim H.Y. (2007). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90:979–988.Google Scholar
  31. Calon F., Lim G.P., Morihara T., Yang F.S., Ubeda O., Salem N.J., Frautschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur. J. Neurosci. 22:617–626.PubMedGoogle Scholar
  32. Carluccio M.A., Massaro M., Scoditti E., and De Caterina R. (2007). Vasculoprotective potential of olive oil components. Mol. Nutr. Food Res. 51:1225–1234.PubMedGoogle Scholar
  33. Carrasco Pancorbo A., Cruces-Blanco C., Segura Carretero A., and Fernandez Gutierrez A. (2004). Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis. J. Agric. Food Chem. 52:6687–6693.PubMedGoogle Scholar
  34. Carrasco Pancorbo A., Segura Carretero A., and Fernandez Gutierrez A. (2005). Co-electroosmotic capillary electrophoresis determination of phenolic acids in commercial olive oil. J. Sep. Sci. 28:925–934.PubMedGoogle Scholar
  35. Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75:259–269.Google Scholar
  36. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A.M., Besnard J.C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.PubMedGoogle Scholar
  37. Chandrasekar B., and Fernandes G. (1994). Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem. Biophys. Res. Commun. 200:893–898.PubMedGoogle Scholar
  38. Chardigny J.M., Destaillats F., Malpuech-Brugere C., Moulin J., Bauman D.E., Lock A.L., Barbano D.M., Mensink R.P., Bezelgues J.B., Chaumont P., Combe N., Cristiani I., Joffre F., German J.B., Dionisi F., Boirie Y., and Sebedio J.L. (2008). Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans Fatty Acids Collaboration (TRANSFACT) study. Am. J. Clin. Nutri. 87:558–566.Google Scholar
  39. Chee K.M., Gong J.X., Rees D.M., Meydani M., Ausman L., Johnson J., Siquel E.N., and Shaefer E.J. (1990). Fatty acid content of marine oil capsules. Lipids 25:523–528.PubMedGoogle Scholar
  40. Clarke W., Parbtani A., Philbrick D., Holub B., and Huff M. (1991). Chronic effects of omega-3 fatty acids (fish oil) in a rat 5/6 renal ablation model. J. Am. Soc. Nephrol. 1:1343–1353.Google Scholar
  41. Colwell J.A. (1997). Multifactorial aspects of the treatment of the type II diabetic patient. Metabolism. 46(12 Suppl 1):1–4.PubMedGoogle Scholar
  42. Covas M.I., de la Torre K., Farre-Albaladejo M., Kaikkonen J., Fito M., Lopez-Sabater C., Pujadas-Bastardes M.A., and de la Torre R. (2006). Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Rad. Biol. Med. 40:608–816.PubMedGoogle Scholar
  43. Davidson M.H. (2006). Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol. 98(4A):27i–33i.PubMedGoogle Scholar
  44. Davidson M.H., Stein E.A., Bays H.E., Maki K.C., Doyle R.T., Shalwitz R.A., Ballantyne C.M., Ginsberg H.N., and COMBination of prescription omega-3 with simvastatin (COMBOS) investigators. (2007). Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin. Ther. 29:1354–1367.PubMedGoogle Scholar
  45. De Caterina R., and Zampolli A. (2001). n-3 fatty acids: antiatherosclerotic effects. Lipids. 36 Suppl:S69–S78.PubMedGoogle Scholar
  46. De Caterina R., and Massaro M. (2005). Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J. Membr. Biol. 206:103–116.PubMedGoogle Scholar
  47. Deckelbaum R.J., Worgall T.S., and Seo T. (2006). n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83:1520S–1525S.PubMedGoogle Scholar
  48. De Rubertis F.R., and Craven P.A. (1993). Eicosanoids in the pathogenesis of the functional and structural alterations of the kidney in diabetes. Am. J. Kidney Dis. 22:727–735.Google Scholar
  49. Donadio J.V. (1993). An overview of n-3 fatty acids in clinical renal diseases. In: De Caterina R., Endres S., Kristensen S.D., and Schmidt E.B. (eds.), Current Topics in Cardiovascular Disease, pp. 123–132. Bi and Gi Publishers, Verona, Italy.Google Scholar
  50. Donadio J.V., Bergstralh E.J., Offord K.P., Spencer D.C., and Holley K.E. (1994). A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N. Engl. J. Med. 331:1194–1199.PubMedGoogle Scholar
  51. Donadio J.V., Grande J.P., Bergstralh E.J., Dart R.A., Larson T.S., and Spencer D.C., (1999). The long-term outcome of patients with IgA nephropathy treated with fish oil in a controlled trial. Mayo Nephrology Collaborative Group. J. Am. Soc. Nephrol. 10:1772–1777.PubMedGoogle Scholar
  52. Donadio J.V., and Grande J.P. (2004). The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Semin. Nephrol. 24:225–243.PubMedGoogle Scholar
  53. Doshi M., Watanabe S., Niimoto T., Kawashima H., IsiKura Y., Kiso Y., and Hamazaki T. (2004). Effect of dietary enrichment with n-3 polyunsaturated fatty acids (PUFA) or n-9 PUFA on arachidonate metabolism in vivo and experimentally induced inflammation in mice. Biol. Pharm. Bull. 27:319–323.PubMedGoogle Scholar
  54. Duncan R.E., El Sohemy A., and Archer M.C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.PubMedGoogle Scholar
  55. Dyerberg J. Bang H.O., Stoffersen E., Moncada S., and Vane J.R., (1978). Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 2:117–119.PubMedGoogle Scholar
  56. Dyerberg J., and Bang H.O. (1979). Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet 2:433–435.PubMedGoogle Scholar
  57. Elkeles R.S., Diamond J.R., Poulter C., Dhanjil S., Nicolaides A.N., Mahmood S., Richmond W., Mather H., Sharp P., and Feher M.D. (1998). Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary's, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 21:641–648.PubMedGoogle Scholar
  58. Elvevoll E.O., Barstad H., Breimo E.S., Brox J., Eilertsen K.E., Lund T., Olsen J.O., and Osterud B. (2006). Enhanced incorporation of n-3 fatty acids from fish compared with fish oils. Lipids 41:1109–1114.PubMedGoogle Scholar
  59. Engler M.M., Engler M.B., Kroetz D.L., Boswell K.D., Neeley E., and Krassner S.M. (1999). The effects of a diet rich in docosahexaenoic acid on organ and vascular fatty acid composition in spontaneously hypertensive rats. Prostaglandins Leukot. Essent. Fatty Acids. 61:289–295.Google Scholar
  60. Eritsland J., Arnesen H., Fjeld N.B., Gronseth K., and Abdelnoor M. (1995). Risk factors for graft occlusion after coronary artery bypass grafting. Scand. J. Thorac. Cardiovasc. Surg. 29:63–69.PubMedGoogle Scholar
  61. Farooqui A.A., Ong W.Y., Horrocks L.A. Chen P., and Farooqui T. (2007). Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res Rev. 56:443–471.PubMedGoogle Scholar
  62. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York.Google Scholar
  63. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.Google Scholar
  64. Ferrucci L., Cherubini A., Bandinelli S., Bartali B., Corsi, A., Lauretani F., Martin A., and res-Lacueva C., Senin U., and Guralnik J.M. (2006). Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 91:439–446.PubMedGoogle Scholar
  65. Fricke H., Gercken G., Schreiber W., and Oelenschlager J. (2006). Lipid, sterol and fatty acid composition of antarctic krill (Euphausia superba Dana). Lipids 19:821–827.Google Scholar
  66. Fuentez F., Lopez-Miranda J., Perez-Martinez P., Jimenez Y., Marin C., Gomez P., Fernandez J.M., Caballero J., Delgado-Lista J., and Perez-Jimenez F. (2008). Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with α-linolenic acid on postprandial endothelial function in healthy men. Br. J. Nutr. 14:1–7.Google Scholar
  67. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Brit. J. Pharmacol. 132:1417–1422.Google Scholar
  68. Garg A., and Grundy S.M. (1990). Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 264:723–726.PubMedGoogle Scholar
  69. Garg M.L., Leitch J., Blake R.J., and Garg R. (2006). Long-chain n-3 polyunsaturated fatty acid incorporation into human atrium following fish oil supplementation. Lipids 41:1127–1132.PubMedGoogle Scholar
  70. Geppert J., Kraft V., Demmelmair H., and Koletzko B. (2005). Docosahexaenoic acid supplementation in vegetarians effectively increases omega-3 index: a randomized trial. Lipids 40:807–814.PubMedGoogle Scholar
  71. German O.L., Insua M., Gentili C., Rotstein N.P., and Politi L.E. (2006). Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J. Neurochem. 98:1507–1520.PubMedGoogle Scholar
  72. Ginsberg N.N., Barr S.I., Gilbert A., Karmally W., Deckelbaum R., Kaplan K., Kamakrishnan R., Holleren S., and Dell R.B. (1990). Reduction of plasma cholesterol levels in normal men on an American Heart Association Step 1 diet or a Step 1 diet with added monounsaturated fat. N. Engl. J. Med. 322:574–579.PubMedGoogle Scholar
  73. GISSI-Prevenzione Investigators. (1999). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 354:447–455.Google Scholar
  74. Goldstein D.J., Wheeler D.C., Sandstrom D.J., Kawachi H., and Salant D.J. (1995). Fish oil ameliorates renal injury and hyperlipidemia in the Milan normotensive rat model of focal glomerulosclerosis. J. Am. Soc. Nephrol. 6:1468–1475.PubMedGoogle Scholar
  75. Granda B., Tabernero A., Tello V., and Medina J.M. (2003). Oleic acid induces GAP-43 expression through a protein kinase C-mediated mechanism that is independent of NGF but synergistic with NT-3 and NT-4/5. Brain Res. 988:1–8.PubMedGoogle Scholar
  76. Grande J.P., Walker H.J., Holub B.J., Warner G.M., Keller D.M., Haugen J.D., Donadio J.V., and Dousa T.P. (2000). Suppressive effects of fish oil on mesangial cell proliferation in vitro and in vivo. Kidney Int. 57:1027–1040.PubMedGoogle Scholar
  77. Griffin B.A. (2001). The effect of n-3 fatty acids on low density lipoprotein subfractions. Lipids 36 Suppl:S91–S97.PubMedGoogle Scholar
  78. Hao C.M. and Brever M.D. (2007). Roles of lipid mediators in kidney injury. Semin. Nephrol. 27:338–351.PubMedGoogle Scholar
  79. Hao C.M. and Brever M.D. (2008). Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 70:357–377.PubMedGoogle Scholar
  80. Harris W.S. (1997). n-3 fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr. 65(5 Suppl):1645S–1654S.PubMedGoogle Scholar
  81. Harris W.S. (2004). Are omega-3 fatty acids the most important nutritional modulators of coronary heart disease risk? Curr. Atheroscler. Rep. 6:447–452.PubMedGoogle Scholar
  82. Harris W.S. (2007). Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217–223.PubMedGoogle Scholar
  83. Harris W.S. (2008). The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87:1997S–2002S.PubMedGoogle Scholar
  84. Harris W.S., Miller M., Tighe A.P., Davidson M.H., and Schaefer E.J. (2008). Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197:12–24.PubMedGoogle Scholar
  85. Harvey K.A. Arnold T., Rasool T., Antaites C., Miller S.J., and Siddiqui R.A. (2008). Trans-fatty acids induce pro-inflammatory responses and endothelial cell dysfunction. Br. J. Nutr. 99:723–731.PubMedGoogle Scholar
  86. Hashimoto M., Hossain M.S., Yamasaki H., Yazawa K., and Masumura S. (1999). Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304.PubMedGoogle Scholar
  87. Hashimoto M., Hossain S., Shimada T., and Shido O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid β-infused rats is associated with increased synaptosomal membrane fluidity. Clin. Exp. Pharmacol. Physiol. 33:934–939.PubMedGoogle Scholar
  88. Hepburn F.N., Exler J., and Weihrauch J.L. (1986). Provisional tables on the content of omega-3 fatty acids and other fat components of selected foods. J. Am. Diet. Assoc. 86:788–793.PubMedGoogle Scholar
  89. Hirafuji M., Machida T., Tsunoda M., Miyamoto A., and Minami M. (2002). Docosahexaenoic acid potentiates interleukin-1β induction of nitric oxide synthase through mechanism involving p44/42 MAPK activation in rat vascular smooth muscle cells. Br. J. Pharmacol. 136:613–619.PubMedGoogle Scholar
  90. Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J. Pharmacol. Sci. 92:308–316.PubMedGoogle Scholar
  91. Honen B.N., Saint D.A., and Laver D.R. (2003). Suppression of calcium sparks in rat ventricular myocytes and direct inhibition of sheep cardiac RyR channels by EPA, DHA and oleic acid. J. Membr. Biol. 196:95–103.PubMedGoogle Scholar
  92. Hong S., Gronert K., Devchand P.R., Moussignac R.L., and Serhan C.N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – Autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.PubMedGoogle Scholar
  93. Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids. 70:361–372.PubMedGoogle Scholar
  94. Hossain M.S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.Google Scholar
  95. Hossain M.S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 72:1133–1138.PubMedGoogle Scholar
  96. Hunter J.E. (2006). Dietary trans fatty acids: review of recent human studies and food industry responses. Lipids 41:967–992.PubMedGoogle Scholar
  97. Imig J.D. (2006). Eicosanoids and renal vascular function in diseases. Clin. Sci. 111:21–34.PubMedGoogle Scholar
  98. Jakobsen M.U., Overvad K., Dyerberg J., and Heitmann B.L. (2008). Intake of ruminant trans fatty acids and risk of coronary heart disease. In. J. Epidemiol. 37:173–182.Google Scholar
  99. Kagawa Y., Nishizawa M., Suzuki M., Miyatake T., Hamamoto T., Goto K., Motonaga E., Izumikawa H., Hirata H., and Ebihara H. (1982). Eicosapolyenoic acids of serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J. Nutr. Sci. Vitaminol. (Tokyo) 28:441–453.Google Scholar
  100. Kang Z.B., Ge Y., Chen Z., Cluette-Brown J., Laposata M., Leaf A., and Kang J.X. (2001). Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc. Natl. Acad. Sci USA 98:4050–4054.PubMedGoogle Scholar
  101. Karantonis H.C., Antonopoulou S., Perrea D.N., Sokolis D.P., Theocharis S.E., Kavantzas N., Iliopoulos D.G., and Demopoulos C.A. (2006). In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr. Metab. Cardiovasc. Dis. 16:174–185.PubMedGoogle Scholar
  102. Kasim-Karakas S.E. (1995). Impact of n-3 fatty acids on lipoprotein metabolism. Curr. Opin. Lipidol. 6:167–171.PubMedGoogle Scholar
  103. Katan M.B. (1998). Health effects of trans fatty acids. Eur. J. Clin. Invest. 28:257–258.PubMedGoogle Scholar
  104. Kelley D.S., Siegel D., Vemuri M., Chung G.H., and McKey B.E. (2008). Docosahexaenoic acid supplementation decreases remnant-like particle-cholesterol and increases the (n-3) index in hypertriglyceridemic men. J. Nutr. 138:30–35.PubMedGoogle Scholar
  105. Kesavulu M.M., Kameswararao B., Apparao Ch., Kumar E.G., Harinarayan C.V. (2002). Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metabo. 28:20–26.Google Scholar
  106. Khan W.A., Blobe G.C., and Hunnun Y.A. (1992). Activation of protein kinase C by oleic acid. Determination and analysis of inhibition by detergent micelles and physiologic membranes: requirement for free oleate. J. Biol. Chem. 267:3605–3612.PubMedGoogle Scholar
  107. Kidd P.M. (2007). Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev. 12:207–227.PubMedGoogle Scholar
  108. Kimura S. (2000). Antihypertensive effect of docosahexaenoic acid in stroke-prone spontaneously hypertensive rats. Yakugaku Zasshi 120:607–619.PubMedGoogle Scholar
  109. Kristensen S.D., Bach Iversen A.M., and Schmidt E.B. (2001). n-3 polyunsaturated fatty acids and coronary thrombosis. Lipids 36 Suppl:S79–S82.PubMedGoogle Scholar
  110. Langelier B., Alessandri J.M., Perruchot M.H., Guesnet P., and Lavialle M. (2005). Changes of the transcriptional and fatty acid profiles in response to n-3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids 40:719–728.PubMedGoogle Scholar
  111. Lavado E., Sanchez-Abarca L.I., Tabernero A., Bolanos J.P., Medina J.M. (1997). Oleic acid inhibits gap junction permeability and increases glucose uptake in cultured rat astrocytes. J. Neurochem. 69:721–728.PubMedGoogle Scholar
  112. Leaf A., Kang J.X., Xiao Y.F., Billman G.E., Voskuyl R.A. (1999). Experimental studies on antiarrhythmic and antiseizure effects of polyunsaturated fatty acids in excitable tissues. J. Nutr. Biochem. 10:440–448.PubMedGoogle Scholar
  113. Leaf A. (2001). The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n-3 polyunsaturated fatty acids: heart and brain. Lipids 36 Suppl:S107–S110.PubMedGoogle Scholar
  114. Leaf A., Xiao Y.F., Kang J.X., and Billman G.E. (2003). Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol. Ther. 98:355–377.Google Scholar
  115. Lee T.H., Hoover R.L., Williams J.D., Sperling R.L., Ravalese J. 3rd, Spur B.W., Robinson D.R., Corey E.J., Lewis R.A., and Austen F.K. (1985). Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N. Engl. J. Med. 312:1217–1224.PubMedGoogle Scholar
  116. Leifert W.R., Jahangiri A., and McMurchie E.J. (2000). Membrane fluidity changes are associated with the antiarrhythmic effects of docosahexaenoic acid in adult rat cardiomyocytes. J. Nutr. Biochem. 11:38–44.PubMedGoogle Scholar
  117. Logan A.C. (2003). Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern. Med. Rev. 8:410–425.PubMedGoogle Scholar
  118. Lombardi F. and Terranova P. (2007). Anti-arrhythmic properties of N-3 poly-unsaturated fatty acids (n-3 PUFA). Curr. Med. Chem. 14:2070–2080.PubMedGoogle Scholar
  119. Lopez-Miranda J., Delgado-Lista J., Perez-Martinez P., Jimenez-Gomez Y., Fuentes F., Ruano J., and Marin C. (2007). Olive oil and the haemostatic system. Mol. Nut. Food Res. 51:1249–1259.Google Scholar
  120. Mahmud I., Hossain A., Hossain S., Hannan A., Ali L., and Hashimoto M. (2004). Effects of Hilsa ilisa fish oil on the atherogenic lipid profile and glycaemic status of streptozotocin-treated type 1 diabetic rats. Clin. Exp. Pharmacol. Physiol. 31:76–81.PubMedGoogle Scholar
  121. Malinowski J.M., and Metka K. (2007). Elevation of low-density lipoprotein cholesterol concentration with over-the-counter fish oil supplementation. Ann. Pharmacother. 41:1296–1300.PubMedGoogle Scholar
  122. Mann N., Sinclair A., Pille M., Johnson L., Warrick G., Reder E., and Lorenz R. (1997). The effect of short-term diets rich in fish, red meat, or white meat on thromboxane and prostacyclin synthesis in humans. Lipids 32:635–644.PubMedGoogle Scholar
  123. Marcheselli V.L., Hong S., Lukiw W.J., Tian X.H., Gronert K., Musto A., Hardy M., Gimenez J.M., Chiang N., Serhan C.N., and Bazan N.G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  124. McGahon B.M., Martin D.S.D., Horrobin D.F., and Lynch M.A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience 94:305–314.PubMedGoogle Scholar
  125. McGuinness J., Neilan T.G., Sharkasi A., Bouchier-Hayes D., and Redmond J.M. (2006). Myocardial protection using an omega-3 fatty acid infusion: quantification and mechanism of action. J. Thorac. Cardiovasc. Surg. 132:72–79.PubMedGoogle Scholar
  126. McKenney J.M. and Sica D. (2007). Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy 27:715–728.PubMedGoogle Scholar
  127. McLennan P.I., Bridle T.M., Abeywardena M.Y., and Charnock J.S. (1993). Comparative efficacy of n-3 and n-6 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in marmoset monkeys. Am. J. Clin. Nutr. 58:666–669.PubMedGoogle Scholar
  128. McLennan P.I. (2001). Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models. Lipids 36 (suppl.):S111–S114.PubMedGoogle Scholar
  129. Moreno J.J. (2003). Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Rad. Biol. Med. 35:1073–1081.PubMedGoogle Scholar
  130. Mori T.A., Watts G.F., Burke V., Hilme E., Puddey I.B., and Beilin L.I. (2000). Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 102:1264–1269.PubMedGoogle Scholar
  131. Mori T., Kondo H., Hase T., Tokimitsu I., and Murase T. (2007). Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6 J mice. J Nutr. 137:2629–2634.PubMedGoogle Scholar
  132. Morgado N., Rigotti A., and Valenzuela A. (2005). Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat. Ann. Nutr. Metab. 49:397–406.PubMedGoogle Scholar
  133. Mozaffarian D. (2006). Trans fatty acids – effects on systemic inflammation and endothelial function. Atherosclero. Suppl. 7:29–32.Google Scholar
  134. Mozaffarian D., and Willett W.C. (2007). Trans fatty acids and cardiovascular risk: a unique cardiometabolic imprint? Curr Atheroscler Rep. 9:486–493.PubMedGoogle Scholar
  135. Nestel P.J., Shige H., Pomeroy S., Cehun M., Abbey M., and Raederstorff D. (2002). The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am. J. Clin. Nutr. 76:326–330.PubMedGoogle Scholar
  136. Nilsen D.W., Albrektsen G., Landmark K., Moen S., Aarsland T., and Woie L. (2001). Effects of a high-dose concentrate of n-3 fatty acids or corn oil introduced early after an acute myocardial infarction on serum triacylglycerol and HDL cholesterol. Am. J. Clin. Nutr. 74:50–56.PubMedGoogle Scholar
  137. Payon D.G., Wong M.Y., Chernou-Rogan T., Valone F.H., Pickett W.C., Blake V.A., Gold W.M., and Goetzl E.J. (1986). Alterations in human leukocyte function induced by ingestion of eicosapentaenoic acid. J. Clin. Immunol. 6:402–410.Google Scholar
  138. Perez-Jimenez F., Alvarez de Cienfuegos G., Badimon L., Barja G., Battino M., Blanco A., Bonanome A., Colomer R., Corella-Piquer D., Covas I., Chamorro-Quiros J., Escrich E., Gaforio J.J., Garcia Luna P.P., Hidalgo L., Kafatos A., Kris-Etherton P.M., Lairon D., Lamuela-Raventos R., Lopez-Miranda J., Lopez-Segura F., Martinez-Gonzalez M.A., Mata P., Mataix J., Ordovas J., Osada J., Pacheco-Reyes R., Perucho M., Pineda-Priego M., Quiles J.L., Ramirez-Tortosa M.C., Ruiz-Gutierrez V., Sanchez-Rovira P., Solfrizzi V., Soriguer-Escofet F., de la Torre-Fornell R., Trichopoulos A., Villalba-Montoro J.M., Villar-Ortiz J.R., and Visioli F. (2005). International conference on the healthy effect of virgin olive oil. Eur. J. Clin. Invest. 35:421–424.PubMedGoogle Scholar
  139. Perez-Jemenez F., Lista J.D., Perez-Martinez P., Lopez-Segura F., Fuentes F., Cortes B., Lazano A., and Lopez-Miranda J. (2006). Olive oil and haemostasis: a review on its healthy effects. Public Health Nutr. 9:1083–1088.Google Scholar
  140. Perez-Jimenez F., Ruano J., Perez-Martinez P., Lopez-Segura F., and Lopez-Miranda J. (2007). The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res. 51:1199–1208.PubMedGoogle Scholar
  141. Perez-Martinez P., Lopez-Mirando J., Blanco-Colio L., Bellido C., Jimenez Y., Moreno J.A., Delgado-Lista J., Egido J., Perez-Jimenez F. (2007). The chronic intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor kappaB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis 194:e141–e146.PubMedGoogle Scholar
  142. Phillis J.W., Horrocks L.A., and Farooqui A.A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  143. Pongrac J.L., Slack P.J., and Innis S.M. (2007). Dietary polyunsaturated fat that is low in (n-3) and high in (n-6) fatty acids alters the SNARE protein complex and nitrosylation in rat hippocampus. J Nutr. 137:1852–1856.PubMedGoogle Scholar
  144. Poumès-Ballihaut C., Langelier B., Houlier F., Alessandri J.M., Durand G., Latge C., and Guesnet P. (2001). Comparative bioavailability of dietary α-linolenic and docosahexaenoic acids in the growing rat. Lipids 36:793–800.PubMedGoogle Scholar
  145. Psota T.L., Gebauer S.K., and Kris-Etherton P. (2006). Dietary omega-3 fatty acid intake and cardiovascular risk. Am. J. Cardiol. 98(Suppl.):3i–18i.PubMedGoogle Scholar
  146. Puskás L.G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.PubMedGoogle Scholar
  147. Pyorala K., Pedersen T.R., Kjckshus J., Faergeman O., Olsson A.G., and Thorgeisson G. (1997). Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S) Diabetes Care 20:614–620.PubMedGoogle Scholar
  148. Rahman M.A., Sauter D.C., and Young M.R. (1991). Effects of dietary fish oil on the induction of experimental membranous nephropathy in the rat. Lab Invest. 64:371–376.PubMedGoogle Scholar
  149. Romieu I., and Trenga C. (2001). Diet and obstructive lung diseases. Epidemiol. Rev. 23:268–287.PubMedGoogle Scholar
  150. Ramirez-Tortose M.C., Suarez A., Gomez M.C., Mir A., Ros E., Mataix J., and Gil A. (1999a). Effect of extra-virgin olive oil and fish-oil supplementation on plasma lipids and susceptibility of low-density lipoprotein to oxidative alteration in free-living Spanish male patients with peripheral vascular disease. Clin. Nutri. 18:167–174.Google Scholar
  151. Ramirez-Tortose M.C., Lopez-Pedrosa J.M., Suarez A., Ros E., Mataix J., and Gil A. (1999b). Olive oil- and fish oil-enriched diets modify plasma lipids and susceptibility of LDL to oxidative modification in free-living male patients with peripheral vascular disease: the Spanish Nutrition Study. Br. J. Nutri. 82:31–39.Google Scholar
  152. Rodríguez-Rodríguez R.A., Tabernero A., Velasco A., Lavado E.M., and Medina J.M. (2004). The neurotrophic effect of oleic acid includes dendritic differentiation and the expression of the neuronal basic helix-loop-helix transcription factor NeuroD2. J. Neurochem. 88:1041–1051.PubMedGoogle Scholar
  153. Romieu I., and Trenga C. (2001). Diet and obstructive lung diseases. Epidemiol. Rev. 23:268–287.PubMedGoogle Scholar
  154. Ruano J., Lopez-Maranda J., Fuentes F., Moreno J.A., Bellido C., Perez-Martinez P., Lazano A., Gomez P., Jimenez Y., and Perez-Jimenez F. (2005). Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J. Am. Coll. Cardiol. 46:1864–1868.PubMedGoogle Scholar
  155. Ruano J., Lopez-Miranda J., Delgado-Lista J., Fernandez J., Caballero J., Covas M.I., Jimenez Y., Perez-Martinez P., Marin C., Fuentes F., and Perez-Jemenez F. (2007). Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. Am. J. Clin. Nutr. 86:341–346.PubMedGoogle Scholar
  156. Rupp H., Wagner D., Rupp T., Schulte L.M., and Mairch B. (2004). Risk stratification by the “EPA+DHA level” and the “EPA/AA ratio” focus on anti-inflammatory and antiarrhythmogenic effects of long-chain omega-3 fatty acids. Herz 29:673–685.PubMedGoogle Scholar
  157. Rupp H., Rupp T., Wagner D., Alter P., and Mairch B. (2006). Microdetermination of fatty acids by gas chromatography and cardiovascular risk stratification by the “EPA+DHA level”. Herz 31 Suppl 3:30–49.Google Scholar
  158. Rustan A.C., Nossen J.O., Chrisriansen E.N., and Drevon C.A. (1988). Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A: 1,2-diacylglycerol acyltransferase. J. Lipid Res. 29:1417–1426.PubMedGoogle Scholar
  159. Rustan A.C., and Drevon C.A. (1989). Eicosapentaenoic acid inhibits hepatic production of very low density lipoprotein. J. Intern. Med. Suppl. 731:31–38.PubMedGoogle Scholar
  160. Schmidt E.B. (1997). n-3 fatty acids and the risk of coronary heart disease. Dan. Med. Bull. 44:1–22.PubMedGoogle Scholar
  161. Schmidt E.B., Moller J.M., Svaneborg N., and Dyerberg J. (1994). Safety aspects of fish oils. Drug Invest. 7:215–220.Google Scholar
  162. Schmitz P.G., Zhang K., and Dalal R. (2000). Eicosapentaenoic acid suppresses PDGF-induced DNA synthesis in rat mesangial cells: involvement of thromboxane A2. Kidney Int. 57:1041–1051.PubMedGoogle Scholar
  163. Schwartz J. (2000). Role of polyunsaturated fatty acids in lung disease. Am. J. Clin. Nutr. 71(1 Suppl):393S–396S.PubMedGoogle Scholar
  164. Scott B.L., and Bazan N.G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86:2903–2907.PubMedGoogle Scholar
  165. Serhan C.N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  166. Sharma M.R., Povavarapu R., Roseman D., Eaton E., Kishor P.M., and Nanji A.A. (2008). Increased severity of alcoholic liver injury in female verses male rats: a microarray analysis. Exp. Mol. Pathol. 84:46–58.PubMedGoogle Scholar
  167. Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.PubMedGoogle Scholar
  168. Simopoulos A.P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 233:674–688.Google Scholar
  169. Smit H.A., Grievink L., and Tabak, C. (1999). Dietary influences on chronic obstructive lung disease and asthma: a review of the epidemiological evidence. Proc. Nutr. Soc. 58:309–319.PubMedGoogle Scholar
  170. Smith A.B. 3rd, Sperry J.B., and Han O. (2007). Syntheses of (-)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (-)-deacetoxy-oleuropein aglycone, and related analogues. J. Org. Chem. 72:6891–6900.PubMedGoogle Scholar
  171. Storlien L.H., Jenkins A.B., Chisholm D.J., Pascoe W.S., Louri S., and Kraegen E.W. (1991). Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40:280–289.PubMedGoogle Scholar
  172. Studer M., Briel M., Leimenstoll B., Glass T.R., and Bucher H.C. (2005). Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch. Intern. Med. 165:725–730.PubMedGoogle Scholar
  173. Swan J.S., Dibb K., Negretti N., O'Neill S.C., and Sitsapesan R. (2003). Effects of eicosapentaenoic acid on cardiac SR Ca2+-release and ryanodine receptor function. Cardiovasc. Res. 60:337–346.PubMedGoogle Scholar
  174. Tabernero A., Lavado E.M., Granda B., Velasco A., and Medina J.M. (2001). Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J. Neurochem. 79:606–616.PubMedGoogle Scholar
  175. Tabernero A., Velasco A., Granda B., Lavado E.M., and Medina J.M. (2002). Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J. Biol. Chem. 277:4240–4246.PubMedGoogle Scholar
  176. Valenzuela A., and Morgado N. (1999). Trans fatty acid isomers in human health and in the food industry. Biol. Res. 32:273–287.PubMedGoogle Scholar
  177. Van Vlijmen B.J., Mensink R.P., van ‘t Hof H.B., Offermans R.F., Hofker M.H., and Havekes L.M. (1998). Effects of dietary fish oil on serum lipids and VLDL kinetics in hyperlipidemic apolipoprotein E*3-Leiden transgenic mice. J. Lipid Res. 39:1181–1188.PubMedGoogle Scholar
  178. Verlengia R., Gorjão R., Kanunfre C.C., Bordin S., Martins de Lima T., Fernandes Martins E., Newsholme P., and Curi R. (2004). Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids. 39:857–864.PubMedGoogle Scholar
  179. Visioli F., Rise P., Barassi M.C., Marangoni F., and Galli C. (2003). Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. Lipids 38:415–418.PubMedGoogle Scholar
  180. von Schacky C., and Harris W.S. (2007). Cardiovascular risk and the omega-3 index. J. Cardiovasc. Med. (Hagerstown). 8 Suppl 1:S46-S49.Google Scholar
  181. von Schacky C. (2006). A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels. Vasc. Health Risk Manag. 2:251–262.Google Scholar
  182. von Schacky C. (2008). Omega-3 fatty acids: antiarrhythmic, proarrhythmic or both? Curr. Opin. Clin. Nutr. Metab. Care. 11:94–99.Google Scholar
  183. Voss A., Reinhart M., Sankarappa S., and Sprecher H. (1991). The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266:19995–20000.PubMedGoogle Scholar
  184. Xiao Y.F., and Li X.Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedGoogle Scholar
  185. Yehuda S., Rabinovitz S., Carasso R.L., and Mostofsky D.I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedGoogle Scholar
  186. Yokoyama M., Origass H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., Oikawa S., Sasaki J., Hishida H., Itakura H., Kita T., Kitabatake A., Nakaya N., Sakata T., Shimada K., and Shirato K. Japan EPA Lipid intervention study (JELIS) investigator (2007). Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369(9567):1090–1098.PubMedGoogle Scholar
  187. Yusufi A.N.K., Cheng J., Thompson M.A., Walker H.J., Gray C.E., Warner G.M., and Grande J.P. (2003). Differential effects of low-dose docosahexaenoic acid and eicosapentaenoic acid on the regulation of mitogenic signaling pathways in mesangial cells. J. Lab. Clin. Med. 141:318–329.PubMedGoogle Scholar
  188. Zaima N., Sugawara T., Goto D., and Hirata T. (2006). Trans geometric isomers of EPA decrease LXRalpha-induced cellular triacylglycerol via suppression of SREBP-1c and PGC-1beta. J. Lipid Res. 47:2712–2717.PubMedGoogle Scholar
  189. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations