Nanodiamonds pp 175-188 | Cite as

Polymeric Encapsulation of Nanodiamond–Chemotherapeutic Complexes for Localized Cancer Treatment

  • Robert Lam
  • Mark Chen
  • Houjin Huang
  • Eiji Ōsawa
  • Dean HoEmail author


A diverse range of synthetic and natural nanoscale carriers in both particle and film/scaffold formats have been developed to enable controlled therapeutic release. Examples of these systems include metallic nanoparticles, polymer–protein conjugates, liposomes, micelles, dendrimers, polyelectrolyte films, copolypeptides, carbon nanotubes, etc. Nanodiamonds (NDs), in particular, possess several advantageous properties that make them suitable for advanced drug delivery while also remaining biocompatible. We have previously developed a method of functionalizing aqueous solubilized NDs of diameter 2–8 nm with doxorubicin (DOX), a clinically relevant chemotherapeutic capable of inducing potent DNA fragmentation and cellular apoptosis. This work has realized a scalable approach toward the fabrication of ND-embedded polymer microfilms for localized and sustained drug elution for post-operative chemotherapy. Due to their high surface-area-to-volume ratio and noninvasive dimensions, NDs are capable of extremely high loading capacities of therapeutic compounds. In addition, we have demonstrated the capability of ND binding with a broad range of charged therapeutic molecules via physical interactions due to their inherent surface charge properties. NDs are also biologically stable and appear to be non-toxic, which prevents adverse stressful/inflammation-inducing cellular reactions in the event that they are dispersed throughout the body for either systemic or more localized release activity. The combination of these properties in one system makes the NDs promising platforms for slow-release therapeutics to treat a broad array of physiological disorders (e.g. cancer, heart disease, wound healing, etc.).


Drug Release Hybrid Film Burst Release Oxygen Plasma Treatment Drug Delivery Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The authors gratefully acknowledge support from the National Science Foundation, a V Foundation for Cancer Research V Scholars Award and National Institutes of Health grant U54 A1065359


  1. 1.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 18:751CrossRefGoogle Scholar
  2. 2.
    Volodkin D, Arntz Y, Schaaf P, Moehwald H, Voegel JC, Ball V (2008) Soft Matter 4:122CrossRefGoogle Scholar
  3. 3.
    Langer R (1990) Science 249:1527CrossRefGoogle Scholar
  4. 4.
    Wood KC, Chuang HF, Batten RD, Lynn DM, Hammond PT (2006) Proc Natl Acad Sci USA 103:10207CrossRefGoogle Scholar
  5. 5.
    Kim B, Park SW, Hammond PT (2008) ACS Nano 2:386CrossRefGoogle Scholar
  6. 6.
    Deming TJ (2002) Adv Drug Deliv Rev 54:1145CrossRefGoogle Scholar
  7. 7.
    Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Adv Drug Deliv Rev 58:1460CrossRefGoogle Scholar
  8. 8.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305CrossRefGoogle Scholar
  9. 9.
    Huang H, Pierstorff E, Osawa E, Ho D (2008) ACS Nano 2:203CrossRefGoogle Scholar
  10. 10.
    Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007) J Phys Chem Lett B 111:2Google Scholar
  11. 11.
    Liu K-K, Cheng C-L, Chang C-C, Chao J-I (2007) Nanotechnology 18:325102CrossRefGoogle Scholar
  12. 12.
    Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) J Am Chem Soc 127:17604CrossRefGoogle Scholar
  13. 13.
    Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Nat Mater 3:736CrossRefGoogle Scholar
  14. 14.
    Yang W, Auciello O, Butler JE, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN Jr, Smith LM, Hamers RJ (2002) Nat Mater 1:253CrossRefGoogle Scholar
  15. 15.
    Lankelma J, Dekker H, Luque RF, Luykx S, Hoekman K, Valk P, Diest PJ, Pinedo HM (1999) Clin Cancer Res 5:1703Google Scholar
  16. 16.
    Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, Rasmussen SL, Blumenschein GR, Freireich EJ (1982) Ann Intern Med 96:133Google Scholar
  17. 17.
    Legha SS, Benjamin RS, Mackay B, Yap HY, Wallace S, Ewer M, Blumenschein GR, Freireich EJ (1982) Cancer 49:1762CrossRefGoogle Scholar
  18. 18.
    Hahn AW, York DH, Nichols MF, Amromin GC, Yasuda HK (1984) J Appl Polym Sci Symp 38:55Google Scholar
  19. 19.
    Yamagishi F (1991) Thin Solid Films 202:39CrossRefGoogle Scholar
  20. 20.
    Schmidt EM, McIntosh JS, Bak MJ (1988) Med Biol Eng Comput 26:96CrossRefGoogle Scholar
  21. 21.
    Burkel WE, Kahn RH (1977) Ann N Y Acad Sci 283:419CrossRefGoogle Scholar
  22. 22.
    Fortin JB, Lu T-M (2002) Chem Mater 14:1945CrossRefGoogle Scholar
  23. 23.
    Huang L-CL, Chang H-C (2004) Langmuir 20:5879CrossRefGoogle Scholar
  24. 24.
    Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105CrossRefGoogle Scholar
  25. 25.
    Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SSF, Chow G-M (1995) Bioconjug Chem 6:507CrossRefGoogle Scholar
  26. 26.
    Jain RK (2001) Adv Drug Deliv Rev 46:149CrossRefGoogle Scholar
  27. 27.
    Gorham WF (1966) J Polym Sci A1 4:3027CrossRefGoogle Scholar
  28. 28.
    Lee JH, Hwang KS, Kim TS (2004) J Korean Phys Soc 44:1177Google Scholar
  29. 29.
    Chang TY, Yadav VG, Leo SD, Mohedas A, Rajalingam B, Chen C-L, Selvarasah S, Dokmeci MR, Khademhosseini A (2007) Langmuir 23:11718CrossRefGoogle Scholar
  30. 30.
    Spellman GP, Carley JF, Lopez LA (1999) J Plast Film Sheet 15:308CrossRefGoogle Scholar
  31. 31.
    Tannock IF, Lee CM, Tunggal JK, Cowan DSM, Egorin MJ (2002) Clin Cancer Res 8:878Google Scholar
  32. 32.
    Tannock IF (2001) Cancer Metastasis Rev 20:123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert Lam
    • 1
  • Mark Chen
    • 1
  • Houjin Huang
    • 1
  • Eiji Ōsawa
    • 2
  • Dean Ho
    • 1
    • 3
    Email author
  1. 1.Departments of Biomedical and Mechanical EngineeringRobert R. McCormick School of Engineering and Applied Science, Northwestern UniversityEvanstonUSA
  2. 2.Nanocarbon Research Institute, Ltd., Asama Research Extension Center, Shinshu UniversityUedaJapan
  3. 3.Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Galter PavilionChicagoUSA

Personalised recommendations