Nanodiamonds pp 151-174 | Cite as

Nanodiamond-Mediated Delivery of Therapeutics via Particle and Thin Film Architectures

  • Houjin Huang
  • Erik Pierstorff
  • Karen Liu
  • Eiji Ōsawa
  • Dean Ho


Due to their integrative properties that are conducive towards applications in nanomedicine, nanodiamonds (NDs) can serve as highly versatile and biocompatible carbon-based platforms for the controlled functionalization and delivery of a wide spectrum of therapeutic compounds (e.g. small molecule, protein/antibody, nucleic acid, etc.). This chapter explores the development, effectiveness, and potential of drug-functionalized ND materials (2–8 nm in diameter) via particle and thin film architectures for chemotherapeutic delivery. In this study, doxorubicin hydrochloride (Dox), an apoptosis-inducing cytotoxic drug widely used in chemotherapy, as well as Dexamethasone (Dex), a clinically applicable anti-inflammatory were successfully applied toward the functionalization of NDs and introduced towards murine macrophages (e.g. RAW 264.7) and human colorectal carcinoma cells (e.g. HT-29) with preserved cytotoxic efficacy. The adsorption of Dox onto the NDs and its reversible release were achieved by regulating Cl ion concentration, among other mechanisms and chemical treatment methodologies, and as such, ND particles were found to be able to efficiently ferry the drug inside a broad spectrum of cell lines. Moreover, novel ND thin films were developed by assembling detonation NDs dispersed in aqueous solution into a closely packed ND multilayer nanofilm with positively charged poly-l-lysine (PLL) via the layer by layer (LBL) deposition technique. Comprehensive assays were performed to quantitatively assess and confirm inherent ND biocompatibility in both the particle and thin film architectures via cellular gene expression examination by real time polymerase chain reaction (RT-PCR), DNA fragmentation assays, and mitochondrial function (MTT) analysis, confirming the functional apoptosis-inducing and inflammation-suppressing mechanisms driven by the Dox-functionalized NDs and Dex-functionalized NDs, respectively. The relevance of the Dox–ND composites has been extended toward a translational context, where MTT assays were performed on the HT-29 colon cancer cell line to examine Dox–ND-induced cell death and ND-mediated chemotherapeutic surface sequestering for potential slow- and sustained-release capabilities. Additionally, the functionality of the Dex-ND films was assessed via interrogation of the suppression of inflammatory cytokine release. Suppression of lipopolysaccharide-mediated inflammation was observed through the potent attenuation of tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) levels following ND thin film interfacing with RAW 264.7 murine macrophages. Furthermore, basal cytokine secretion levels examined innate material compati­bility, revealing unchanged quantitative cellular inflammatory responses, which strongly support the non-toxicity and relevance of the NDs as effective treatment platforms for nanoscale medicine. In addition to their straightforward/facile preparation, robustness/resistance to delamination, and fine controllability of the film structures, these hybrid materials possess enormous potential towards biomedical applications such as localized drug delivery and anti-inflammatory implant coatings and devices, as demonstrated in vitro in this chapter.


Real Time Polymerase Chain Reaction Diamond Film Inflammatory Gene Expression Doxorubicin Hydrochloride Drug Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Niemeyer CM (2001) Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  2. 2.
    Michalet X, Pinaud FF, Bentolila LA, Tsay M, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  3. 3.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289–1292CrossRefGoogle Scholar
  4. 4.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792CrossRefGoogle Scholar
  5. 5.
    Bianco A, Prato M (2003) Adv Mater 15:1765–1768CrossRefGoogle Scholar
  6. 6.
    Krüger A (2006) Angew Chem Int Ed 45:6426–6427CrossRefGoogle Scholar
  7. 7.
    Langer R, Tirrell DA (2004) Nature 428:487–492CrossRefGoogle Scholar
  8. 8.
    Langer R (1998) Nature 392:5–10Google Scholar
  9. 9.
    Allen TM, Cullis PR (2004) Science 303:1818–1822CrossRefGoogle Scholar
  10. 10.
    Rao CNR, Cheetham AK (2001) J Mater Chem 11:2887–2894CrossRefGoogle Scholar
  11. 11.
    Caruso F (2001) Adv Mater 13:11–22CrossRefGoogle Scholar
  12. 12.
    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976CrossRefGoogle Scholar
  13. 13.
    Moghimi SM, Hunter AC, Murray JC (2001) Pharma Rev 53:283–318Google Scholar
  14. 14.
    Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Adv Drug Deliv Rev 58:1460–1470CrossRefGoogle Scholar
  15. 15.
    Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) Carbon 44:1034–1047CrossRefGoogle Scholar
  16. 16.
    Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) J Am Chem Soc 126:6850–6851CrossRefGoogle Scholar
  17. 17.
    Kam NWS, Dai HJ (2005) J Am Chem Soc 127:6021–6026CrossRefGoogle Scholar
  18. 18.
    Pantarotto D, Briand JP, Prato M, Bianco A (2004) Chem Commun 1:16–17CrossRefGoogle Scholar
  19. 19.
    Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Angew Chem Int Ed 43:5242–5246CrossRefGoogle Scholar
  20. 20.
    Cai D, Mataraza JM, Qin ZH, Huang ZP, Huang JY, Chiles TC, Carnahan D, Kempa K, Ren ZF (2005) Nat Methods 2:449–454CrossRefGoogle Scholar
  21. 21.
    Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Proc Natl Acad Sci U S A 102:11600–11605CrossRefGoogle Scholar
  22. 22.
    Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Nano Lett 5:1676–1684CrossRefGoogle Scholar
  23. 23.
    Narayan RJ, Wei W, Jin C, Andara M, Agarwal A, Gerhardt RA, Shih CC, Shih CM, Lin SJ, Su YY, Ramamurti Y, Singh RN (2006) Diam Rel Mater 15:1935–1940CrossRefGoogle Scholar
  24. 24.
    Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  25. 25.
    Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Proc Natl Acad Sci U S A 104:727–732CrossRefGoogle Scholar
  26. 26.
    Greiner NR, Phillips DS, Johnson JD, Volk F (1988) Nature 333:440–442CrossRefGoogle Scholar
  27. 27.
    Kruger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Alesenskii AE, Vul AY, Osawa E (2005) Carbon 43:1722–1730CrossRefGoogle Scholar
  28. 28.
    Schrand AM, Huang HJ, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7CrossRefGoogle Scholar
  29. 29.
    Huang L-CL, Chang H-C (2004) Langmuir 20:5879–5884CrossRefGoogle Scholar
  30. 30.
    Chung PH, Perevedentseva E, Tu JS, Chang CC, Cheng CL (2006) Diam Rel Mater 15:622–625CrossRefGoogle Scholar
  31. 31.
    Nguyen TTB, Chang HC, Wu VWK (2007) Diam Rel Mater 16:872–876CrossRefGoogle Scholar
  32. 32.
    Gruen DM, Shenderova OA, Vul’ AY (eds) (2005) Synthesis. Properties and Applications of Ultrananocrystalline Diamond, Springer, New York, USAGoogle Scholar
  33. 33.
    Liu Y, Khabashesku VN, Halas NJ (2005) J Am Chem Soc 127:3712–3713CrossRefGoogle Scholar
  34. 34.
    Liu Y, Gu ZN, Margrave JL, Khabashesku VN (2004) Chem Mater 16:3924–3930CrossRefGoogle Scholar
  35. 35.
    Decher G, Hong JD (1991) Macromol Chem Macromol Symp 46:321–327Google Scholar
  36. 36.
    Decher G (1997) Science 277:1232–1237CrossRefGoogle Scholar
  37. 37.
    Tang ZY, Wang Y, Podsiladlo P, Kotov NA (2006) Adv Mater 18:3203–3224CrossRefGoogle Scholar
  38. 38.
    Huang HJ, Marie J, Kajiuar H, Ata M (2002) Nano Lett 2:1117–1119CrossRefGoogle Scholar
  39. 39.
    Pang LSK, Saxby JD, Chatfield SP (1993) J Phys Chem 97:6941–6942CrossRefGoogle Scholar
  40. 40.
    Prawer S, Nugent KW, Jamieson DN, Orwa JO, Bursill LA, Peng JL (2000) Chem Phys Lett 332:93–97CrossRefGoogle Scholar
  41. 41.
    Chiang LY, Upasani RB, Swirczewski JW (1992) J Am Chem Soc 114:10154–10157CrossRefGoogle Scholar
  42. 42.
    Raty JY, Galli G (2003) Nat Mater 2:792–795CrossRefGoogle Scholar
  43. 43.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krüger A, Osawa E (2007) Adv Mater 19:1201–1206CrossRefGoogle Scholar
  44. 44.
    Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ (1997) Oncol Res 9:313–325Google Scholar
  45. 45.
    Portney NG, Ozkan M (2006) Anal Bioanal Chem 384:620–630CrossRefGoogle Scholar
  46. 46.
    Farokhzad OC, Jon S, Khademhosseini A, Tran TT, LaVan DA, Langer R (2004) Cancer Res 64:7668–7672CrossRefGoogle Scholar
  47. 47.
    Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Proc Natl Acad Sci U S A 103:6315–6320CrossRefGoogle Scholar
  48. 48.
    Nardin C, Hirt T, Leukel J, Meier W (2000) Langmuir 16:1035–1041CrossRefGoogle Scholar
  49. 49.
    Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Science 284:1143–1146CrossRefGoogle Scholar
  50. 50.
    Nardin C, Widmer J, Winterhalter M, Meier W (2001) Eur Phys J E 4:403–410CrossRefGoogle Scholar
  51. 51.
    Nardin C, Thoeni S, Widmer J, Winterhalter M, Meier W (2000) Chem Commun 15:1433–1434CrossRefGoogle Scholar
  52. 52.
    Discher DE, Ahmed FP (2006) Annu Rev Biomed Eng 8:323–341CrossRefGoogle Scholar
  53. 53.
    Geng Y, Discher DE (2005) J Am Chem Soc 127:12780–12781CrossRefGoogle Scholar
  54. 54.
    Ahmed F, Discher DE (2004) J Control Rel 96:37–53CrossRefGoogle Scholar
  55. 55.
    Discher DE, Eisenberg A (2002) Science 297:967–973CrossRefGoogle Scholar
  56. 56.
    Boehm U, Klamp T, Groot M, Howard JC (1997) Annu Rev Immun 15:749–795CrossRefGoogle Scholar
  57. 57.
    Hjelmstrom P (2001) J Leukocyte Biol 69:331–339Google Scholar
  58. 58.
    Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Martzo AM, Isaacs WB, Nelson WG (2005) Carcinogenesis 26:1170–1181CrossRefGoogle Scholar
  59. 59.
    Zolk O, Ng LL, O’Brien RJ, Weyand M, Eschenhagen T (2002) Circulation 106:1442–1446CrossRefGoogle Scholar
  60. 60.
    Corbi P, Rahmati M, Delwail A, Potreau D, Menu P, Wijdenes J, Lecron J-C (2000) Eur J Cardiothorac Surg 18:98–103CrossRefGoogle Scholar
  61. 61.
    Hoeflich KP, Luo J, Rubie EA, Tsao M-S, Jin O, Woodgett JR (2000) Nature 406:86–90CrossRefGoogle Scholar
  62. 62.
    Ishimura N, Bronk SF, Gores GJ (2005) Gastroenterology 128:1354–1368CrossRefGoogle Scholar
  63. 63.
    Perry AK, Chow EK, Goodnough JB (2004) J Exp Med 199:1651–1658CrossRefGoogle Scholar
  64. 64.
    Taga T, Kishimoto T (1997) Annu Rev Immunol 15:797–819CrossRefGoogle Scholar
  65. 65.
    Willenberg HS, Päth G, Vögeli TA, Scherbaum WA, Bornstein SR (2002) Ann N Y Acad Sci 966:304–314CrossRefGoogle Scholar
  66. 66.
    Kishimoto T, Akira S, Narazaki M, Taga T (1995) Blood 86:1243–1254Google Scholar
  67. 67.
    Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T (1993) Science 260:1808–1810CrossRefGoogle Scholar
  68. 68.
    Hirano T, Nakajima K, Hibi M (1997) Cytokine Growth Factor Rev 8:241–252CrossRefGoogle Scholar
  69. 69.
    Danforth JDN, Sgagias MK (1993) Cancer Res 53:1538–1545Google Scholar
  70. 70.
    Klein B, Zhang XG, Lu ZY, Bataille R (1995) Blood 85:863–872Google Scholar
  71. 71.
    Okamoto M, Lee C, Oyasu R (1997) Cancer Res 57:141–146Google Scholar
  72. 72.
    Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY (2003) Oncogene 22:1517–1527CrossRefGoogle Scholar
  73. 73.
    Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003) Oncogene 22:4314–4332CrossRefGoogle Scholar
  74. 74.
    Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC (1999) J Urol 161:182–187CrossRefGoogle Scholar
  75. 75.
    Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP (1999) Prostate 41:127–133CrossRefGoogle Scholar
  76. 76.
    Twillie DA, Eisenberger MA, Carducci MA, Hsieh WS, Kim WY, Simons JW (1995) Urology 45:542–549CrossRefGoogle Scholar
  77. 77.
    Siegsmund MJ, Yamazaki H, Pastan I (1994) J Urol 151:1396–1399Google Scholar
  78. 78.
    Giri D, Ozen M, Ittmann M (2001) Am J Pathol 159:2159–2165Google Scholar
  79. 79.
    Deeble PD, Murphy DJ, Parsons SJ, Cox ME (2001) Mol Cell Biol 21:8471–8482CrossRefGoogle Scholar
  80. 80.
    Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I (1990) Cancer Res 50:7786–7788Google Scholar
  81. 81.
    Yan B, Wang H, Rabbani ZN, Zhao Y, Li W, Yuan Y, Li F, Dewhirst M, Li W (2006) Cancer Res 66:11565–11570CrossRefGoogle Scholar
  82. 82.
    Hendrickse CW, Kelly RW, Radley S, Donovan IA, Keighley B, Neoptolemos JP (1994) Br J Surg 81:1219–1223CrossRefGoogle Scholar
  83. 83.
    Cianchi F, Cortesini C, Bechi P, Fantappie O, Messerini L, Vannacci A, Sardi I, Baroni G, Boddi V, Mazzanti R, Masini E (2001) Gastroenterology 121:1339–1347CrossRefGoogle Scholar
  84. 84.
    Gullino PM (1995) Acta Oncol 34:439–441CrossRefGoogle Scholar
  85. 85.
    Pai R, Szabo IL, Soreghan BA, Atay S, Kawanaka H, Tarnawski AS (2001) Biochem Biophys Res Commun 286:923–928CrossRefGoogle Scholar
  86. 86.
    Ziche M, Morbidelli L, Choudhuri R (1997) J Clin Invest 99:2625–2634CrossRefGoogle Scholar
  87. 87.
    Sugimoto Y, Narumiya S, Ichikawa A (2000) Prog Lipid Res 39:289–314CrossRefGoogle Scholar
  88. 88.
    Cianchi F, Cortesini C, Fantappie O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E (2004) Clin Cancer Res 10:2694–2704CrossRefGoogle Scholar
  89. 89.
    Hassan F, Islam S, Mu MM, Ito H, Koide N, Mori I, Yoshida T, Yokochi T (2005) Mol Cancer Res 3:373–379CrossRefGoogle Scholar
  90. 90.
    Brody JR, Kern SE (2004) Biotechniques 36:214–216Google Scholar
  91. 91.
    Lotem J, Gal H, Kama R, Amariglio N, Rechavi N, Domany E, Sachs L, Givol D (2003) Proc Natl Acad Sci U S A 100:6718–6723CrossRefGoogle Scholar
  92. 92.
    Duan Z, Lamendola DE, Penson RT, Kronish KM, Seide MV (2002) Cytokine 17:234–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Houjin Huang
  • Erik Pierstorff
  • Karen Liu
  • Eiji Ōsawa
  • Dean Ho
    • 1
  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations