Nanodiamonds pp 127-150 | Cite as

Development and Use of Fluorescent Nanodiamonds as Cellular Markers

  • Huan-Cheng Chang


Diamond is an allotrope of carbon. A unique property that distinguishes it from the other carbon materials is that diamond is optically transparent and often contains point defects as color centers. Nitrogen vacancy (N-V) defects are the most noteworthy color centers in diamond. These centers can be produced reproducibly by ion beam irradiation, followed by thermal annealing, and can emit strong and stable fluorescence when excited by visible light. This unique optical property combined with the non-cytotoxicity and good surface functionalizability characteristics of the material makes nanoscale diamonds a promising fluorescent probe for bioimaging applications in cellular environments. This article summarizes the results of our efforts in production and characterization of bright, multicolored (red and green) fluorescent nanodiamonds (FNDs) and their use as cellular markers. Notable advancement of technologies along this line includes mass production of FNDs and real time tracking of a single 35-nm red FND particle in three dimensions in live cells. We envision that further development of the material will provide an increased sensitivity and improved capability for fruitful applications of FNDs in biology and medicine.


Color Center Diamond Film Nitrogen Vacancy Cellular Marker Fluorescence Lifetime Imaging Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Y.-R. Chang and H.-Y. Chou for their assistance in preparing this manuscript. This research was supported by the Academia Sinica and the National Science Council (Grant No. NSC 96-2120-M-001-008-) of Taiwan, ROC.


  1. 1.
    Niemeyer CM (2001) Angew Chem Int Ed Engl 40:4128–4158CrossRefGoogle Scholar
  2. 2.
    Sahoo SK, Labhasetwar V (2003) Drug Discov Today 8:1112–1120CrossRefGoogle Scholar
  3. 3.
    Ferrari M (2005) Nature Rev Cancer 5:161–171CrossRefGoogle Scholar
  4. 4.
    Alivisatos P (2004) Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  5. 5.
    Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Proc Natl Acad Sci U S A 102:11539–11544CrossRefGoogle Scholar
  6. 6.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  7. 7.
    Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Proc Natl Acad Sci U S A 104:12616–12621CrossRefGoogle Scholar
  8. 8.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446CrossRefGoogle Scholar
  9. 9.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18CrossRefGoogle Scholar
  10. 10.
    Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Proc Natl Acad Sci U S A 102:14284–14289CrossRefGoogle Scholar
  11. 11.
    Cui BX, Wu CB, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) Proc Natl Acad Sci U S A 104:13666–13671CrossRefGoogle Scholar
  12. 12.
    Field JE (ed) (1992) Properties of Natural and Synthetic Diamond. Academic, London, UKGoogle Scholar
  13. 13.
    Nebel CE, Shin DC, Rezek B, Tokuda N, Uetsuka H, Watanabe H (2007) J R Soc Interface 4:439–461CrossRefGoogle Scholar
  14. 14.
    Holt KB (2007) Phil Trans R Soc A 365:2845–2861CrossRefGoogle Scholar
  15. 15.
    Krueger A (2008) Chem Eur J 14:1382–1390CrossRefGoogle Scholar
  16. 16.
    Dion I, Baquey C, Monties JR (1993) Int J Artif Organs 16:623–627Google Scholar
  17. 17.
    Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN Jr, Smith LM, Hamers RJ (2002) Nat Mater 1:253–257CrossRefGoogle Scholar
  18. 18.
    Hartl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmuller D, Stutzmann M (2004) Nat Mater 3:736–742CrossRefGoogle Scholar
  19. 19.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314CrossRefGoogle Scholar
  20. 20.
    Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  21. 21.
    Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Proc Natl Acad Sci U S A 104:727–732CrossRefGoogle Scholar
  22. 22.
    Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Nature Nanotech 3:284–288CrossRefGoogle Scholar
  23. 23.
    23. Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Diamond Relat Mater 18:567–573 Google Scholar
  24. 24.
    Smith BR, Niebert M, Plakhotnik T, Zvyagin AV (2007) J Lumin 127:260–263CrossRefGoogle Scholar
  25. 25.
    Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Biophys J 93:2199–2208CrossRefGoogle Scholar
  26. 26.
    Perevedentseva E, Cheng C-Y, Chung P-H, Tu J-S, Hsieh Y-H, Cheng C-L (2007) Nanotechnology 18:315102CrossRefGoogle Scholar
  27. 27.
    Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Nano Lett 7:3588–3591CrossRefGoogle Scholar
  28. 28.
    Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou JP, Chassaing G, Lavielle S (2008) ChemBioChem 9:2113–2119CrossRefGoogle Scholar
  29. 29.
    Faklaris O, Garrot D, Joshi V, Druon F, Boudou J-P, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Small 4:2236–2239CrossRefGoogle Scholar
  30. 30.
    Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru A, Garrell RL, Torbati S, Freitas SSF, Chow G-M (1995) Bioconjug Chem 6:507–511CrossRefGoogle Scholar
  31. 31.
    Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108CrossRefGoogle Scholar
  32. 32.
    Huang L-CL, Chang H-C (2004) Langmuir 20:5879–5884CrossRefGoogle Scholar
  33. 33.
    Krueger A, Liang YJ, Jarre G, Stegk J (2006) J Mater Chem 16:2322–2328CrossRefGoogle Scholar
  34. 34.
    Chung P-H, Perevedentseva E, Tu J-S, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2006) Diamond Relat Mater 15:622–625CrossRefGoogle Scholar
  35. 35.
    Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Appl Phys Lett 90:163903CrossRefGoogle Scholar
  36. 36.
    Nguyen TTB, Chang H-C, Wu VW-K (2007) Diamond Relat Mater 16:872–876CrossRefGoogle Scholar
  37. 37.
    Krueger A, Stegk J, Liang YJ, Lu L, Jarre G (2008) Langmuir 24:4200–4204CrossRefGoogle Scholar
  38. 38.
    Yeap WS, Tan YY, Loh KP (2008) Anal Chem 80:4659–4665CrossRefGoogle Scholar
  39. 39.
    Liu K-K, Chen M-F, Chen P-Y, Lee TJF, Cheng C-L, Chang C-C, Ho Y-P, Chao J-I (2008) Nanotechnology 19:205102CrossRefGoogle Scholar
  40. 40.
    Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Environ Sci Technol 39:1378–1383CrossRefGoogle Scholar
  41. 41.
    Liu K-K, Cheng C-L, Chang C-C, Chao J-I (2007) Nanotechnology 18:325102CrossRefGoogle Scholar
  42. 42.
    Schrand AM, Huang HJ, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai LM (2007) J Phys Chem B 111:2–7CrossRefGoogle Scholar
  43. 43.
    Schrand AM, Dai LM, Schlager JJ, Hussain SM, Osawa E (2007) Diamond Relat Mater 16:2118–2123CrossRefGoogle Scholar
  44. 44.
    Hall HT (1961) J Chem Educ 38:484–489CrossRefGoogle Scholar
  45. 45.
    Davies G (ed) (1994) Properties and growth of diamond, emis datareviews series No. 9, INSPEC. The Institute of Electrical Engineers, London, Chap. 3.Google Scholar
  46. 46.
    Davies G, Hamer MF (1976) Proc R Soc Lond A 348:285–298CrossRefGoogle Scholar
  47. 47.
    Jelezko F, Tietz C, Gruber A, Popa I, Nizovtsev A, Kilin S, Wrachtrup J (2001) Single Mol 2:255–260CrossRefGoogle Scholar
  48. 48.
    Wee T-L, Tzeng Y-K, Han C-C, Chang H-C, Fann W, Hsu J-H, Chen K-M, Yu Y-C (2007) J Phys Chem A 111:9379–9386CrossRefGoogle Scholar
  49. 49.
    Collins AT, Thomaz MF, Jorge MIB (1983) J Phys C 16:2177–2181CrossRefGoogle Scholar
  50. 50.
    Rand SC (1994) In: Davies G (ed.), Properties and growth of diamond, emis datareviews series no. 9, INSPEC. The Institute of Electrical Engineers, London, Chap. 7.4.Google Scholar
  51. 51.
    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Science 276:2012–2014CrossRefGoogle Scholar
  52. 52.
    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Phys Rev Lett 85:290–293CrossRefGoogle Scholar
  53. 53.
    Beveratos A, Brouri R, Gacoin T, Villing A, Poizat JP, Grangier P (2002) Phys Rev Lett 89:187901CrossRefGoogle Scholar
  54. 54.
    Dutt MVG, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov AS, Hemmer PR, Lukin MD (2007) Science 316:1312–1316CrossRefGoogle Scholar
  55. 55.
    Davies G, Lawson SC, Collins AI, Mainwood A, Sharp S (1992) Phys Rev B 46:13157–13170CrossRefGoogle Scholar
  56. 56.
    Davies G, Nazare MH, Hamer MF (1976) Proc R Soc Lond A 351:245–265CrossRefGoogle Scholar
  57. 57.
    Rand SC, DeShazer LG (1985) Opt Lett 10:481–483CrossRefGoogle Scholar
  58. 58.
    Roberts WT, Rand SC, Redmond S (2005) NASA Tech Briefs NPO-30796.Google Scholar
  59. 59.
    Crossfield MD, Davies G, Collins AT, Lightowlers EC (1974) J Phys C 7:1909–1917CrossRefGoogle Scholar
  60. 60.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon: New York. Free SRIM software (version 2003) is available from the website
  61. 61.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642CrossRefGoogle Scholar
  62. 62.
    De Weerdt F, Van Royen J (2001) Diamond Relat Mater 10:474–479CrossRefGoogle Scholar
  63. 63.
    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64CrossRefGoogle Scholar
  64. 64.
    Hui YY, Chang Y-R, Lim T-S, Lee H-Y, Fann W, Chang H-C (2009) Appl Phys Lett 94:013104Google Scholar
  65. 65.
    Lim T-S, Fu C-C, Lee K-C, Lee H-Y, Chen K, Cheng W-F, Pai WW, Chang H-C, Fann W (2009) Phys Chem Chem Phys 11:1508–1514Google Scholar
  66. 66.
    Pante N, Kann M (2002) Mol Biol Cell 13:425–434CrossRefGoogle Scholar
  67. 67.
    Muirhead KA, Horan PK, Poste G (1985) Nat Biotechnology 3:337–356CrossRefGoogle Scholar
  68. 68.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668CrossRefGoogle Scholar
  69. 69.
    Chithrani BD, Chan WCW (2007) Nano Lett 7:1542–1550CrossRefGoogle Scholar
  70. 70.
    Slowing I, Trewyn BG, Lin VS-Y (2006) J Am Chem Soc 128:14792–14793CrossRefGoogle Scholar
  71. 71.
    Billinton N, Knight AW (2001) Anal Biochem 291:175–197CrossRefGoogle Scholar
  72. 72.
    Speidel M, Jonas A, Florin E-L (2003) Opt Lett 28:69–71CrossRefGoogle Scholar
  73. 73.
    Holtzer L, Meckel T, Schmidt T (2007) Appl Phys Lett 90:053902CrossRefGoogle Scholar
  74. 74.
    Cang H, Xu CS, Montiel D, Yang H (2007) Opt Lett 32:2729–2731CrossRefGoogle Scholar
  75. 75.
    Greber UF, Way M (2006) Cell 124:741–754CrossRefGoogle Scholar
  76. 76.
    Hong QA, Sheetz MP, Elson EL (1991) Biophys J 60:910–921CrossRefGoogle Scholar
  77. 77.
    Morita Y, Takimoto T, Yamanaka H, Kumekawa K, Morino S, Aonuma S, Kimura T, Komatsu N (2008) Small 4:2154–2157CrossRefGoogle Scholar
  78. 78.
    Vaijayanthimala V, Chang H-C (2009) Nanomed 4:47–55Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular Sciences, Academia SinicaTaipeiTaiwan

Personalised recommendations