Nanodiamonds pp 117-125 | Cite as

Functionalization of Nanodiamond for Specific Biorecognition

  • Weng Siang Yeap
  • Kian Ping Loh


Diamond has grown increasingly important in science and technology due to its extreme hardness, chemical inertness, high thermal conductivities, wide optical transparency and other unique properties [1–4]. In 2005, Hasegawa of AIST reported the low temperature growth (∼90°C) of nanocrystalline diamond in the European Diamond Conference in Toulouse [5]. This significant breakthrough affords the promise of low temperature deposition of diamond on plastics and polymer, which can be the basis for many new technological applications [6]. Parallel to this development, there are also exciting developments in the purification and applications of detonation nanodiamond powder. Detonation synthesis has now made nanodiamond powder commercially available in ton quantities, thus enabling many engineering applications [5]. It is now possible to produce bulk quantities of fluorescent nanodiamond via electron beam generation of nitrogen-vacancy defect centers [7]. In order to realize the practical applications of nanodiamond particles, surface functionalization of the nanodiamond is necessary in order to achieve specific functions such as bioaffinity and solution-processability, the latter is especially important in applications ranging from polymer blends to composite films [8–13].


Boronic Acid Succinic Anhydride Phenylboronic Acid Doxorubicin Hydrochloride Nanocrystalline Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tang L, Tsai C, Gerberich WW, Kruckeberg L, Kania DR (1995) Biomaterials 16:483CrossRefGoogle Scholar
  2. 2.
    Hauert R (2003) Diamond Relat. Mater 12:583CrossRefGoogle Scholar
  3. 3.
    Wei J, Yates JT Jr (1995) Crit Rev Surf Chem 5:1Google Scholar
  4. 4.
    Bigelow LK, D’Evelyn MP (2002) Surf Sci 500:986CrossRefGoogle Scholar
  5. 5.
    Dolmatov VYu (2001) Russ Chem Rev 70:607–626CrossRefGoogle Scholar
  6. 6.
    Zhang QX, Naito K, Tanaka Y, Kagawa Y (2007) Macromolecules 41:536–538CrossRefGoogle Scholar
  7. 7.
    Huang LCL, Chang HC (2004) Langmuir 20:5879–5884CrossRefGoogle Scholar
  8. 8.
    Chung PH, Perevedentseva E, Tu JS, Chang CC, Cheng CL (2006) Diam Relat Mater 15:622–625CrossRefGoogle Scholar
  9. 9.
    Nguyen TTB, Chang HC, Wu VWK (2007) Diam Relat Mater 18:872–876CrossRefGoogle Scholar
  10. 10.
    Kong XL, Huang LCL, Hsu CM, Chen WH, Han CC, Chang HC (2005) Anal Chem 77:259–265CrossRefGoogle Scholar
  11. 11.
    Krueger A, Stegk J, Liang YJ, Lu Li, Jarre G (2008) Langmuir 24:4200–4204CrossRefGoogle Scholar
  12. 12.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Kruger A (2007) Adv Mater 19:1201–1206CrossRefGoogle Scholar
  13. 13.
    Liu Y, Gu ZN, Margrave JL, Khabashesku VN (2004) Chem Mater 16:3924–3930CrossRefGoogle Scholar
  14. 14.
    DeCarli P, Jamieson J (1961) Science 133:1821CrossRefGoogle Scholar
  15. 15.
    Aleksenskii AE, Baidakova ME, Vul’ AYa, Siklikskii VI (1999) Phys Solid Stat 41:668–671CrossRefGoogle Scholar
  16. 16.
    Greiner NR, Philips DS, Johnson JD, Volk F (1988) Nature 333:440CrossRefGoogle Scholar
  17. 17.
    Kruger A, Ozawa M, Kataoka F, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AY, Osawa E (2005) Carbon 43:1722–1730CrossRefGoogle Scholar
  18. 18.
    Kruger A (2008) J Mater Chem 18:1485–1492CrossRefGoogle Scholar
  19. 19.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Kruger A, Osawa E (2007) Adv Mater 19:1201–1206CrossRefGoogle Scholar
  20. 20.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642CrossRefGoogle Scholar
  21. 21.
    Kong XL, Huang LCL, Hsu CM, Chen WH, Han CC, Chang HC (2005) Anal Chem 77:259–265CrossRefGoogle Scholar
  22. 22.
    Kong XL, Huang LCL, Vivian Liau SC, Han CC, Chang HC (2005) Anal Chem 77:4273–4277CrossRefGoogle Scholar
  23. 23.
    Huang HJ, Pierstoff E, Osawa E, Ho D (2007) Nano Lett, 7(11):3305–14CrossRefGoogle Scholar
  24. 24.
    Nesterenko PN, Fedyanina ON, Volgin YV (2007) Analyst 132:403–405CrossRefGoogle Scholar
  25. 25.
    Article can be updated: Huang HJ, Pierstoff E, Osawa E, Ho D (2007) Nano Lett, 7(11) 3305–14Google Scholar
  26. 26.
    Zang JB, Wang YH, Zhao SZ, Bian LY, Lu J (2006) Diam Relat Mater 16:16–20CrossRefGoogle Scholar
  27. 27.
    Liu XC, Scouten WH (2006) Taylor & Francis, London, UK, pp. 216–229Google Scholar
  28. 28.
    Li FL, Zhao XJ, Wang WZ, Xu GW (2006) Anal Chim Acta 580:181–187CrossRefGoogle Scholar
  29. 29.
    Koyama T, Terauchi KI (1996) J Chromatogr B 679:31–40CrossRefGoogle Scholar
  30. 30.
    Bouriotis V, Galpin IA, Dean PDG (1981) J Chromatogr A 210:267–278CrossRefGoogle Scholar
  31. 31.
    Camli ST, Senel S, Tuncel A (2002) Colloids Surf A Physicochem Eng Asp 207:127–137CrossRefGoogle Scholar
  32. 32.
    Gottschalk A (1972) Glycoproteins. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Lee JH, Kim Y, Ha MY, Lee EK, Choo J (2006) J Am Soc Mass Spectrom 16:1456–1460CrossRefGoogle Scholar
  34. 34.
    Yeap WS, Tan YY, Loh KP (2008) Anal Chem 80:4659–4665CrossRefGoogle Scholar
  35. 35.
    Kruger A, Liang Y, Jarne G, Stegk J (2006) J Mater Chem 16:2322CrossRefGoogle Scholar
  36. 36.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483CrossRefGoogle Scholar
  37. 37.
    George BS, George CD, David LH, Anthony OK, Thomas RV (1994) J Org Chem 59:8151–8156CrossRefGoogle Scholar
  38. 38.
    Yeap WS, Chen SM, Loh KP (2009) Langmuir 25:185–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations