The Fundamental Properties and Characteristics of Nanodiamonds

  • Alexander Aleksenskiy
  • Marina Baidakova
  • Vladimir Osipov
  • Alexander Vul’
Chapter

Abstract

The review is devoted to nanodiamond produced by detonation synthesis. The past results related to the main features of detonation technology for producing nanodiamond are highlighted. Effects of technology on the structure of nanodiamond particles as well as functionalization of nanodiamond surface to chemical properties are discussed. The real structure of single nanodiamond particles has been critically reviewed and its aggregation problem has been emphasized.

The review demonstrates that while retaining the merits inherent in diamond, nanodiamonds exhibit a number of essential features, both in structure and in physico-chemical characteristics. These features give one ground to consider nano­diamonds as a specific nanocarbon material.

Keywords

TiO2 Titanium SiO2 Graphite Chromium 

Notes

Acknowledgment

Studies of the present authors in the field of nanodiamonds have been supported by the Russian Foundation for Basic Research and by Programs of the Russian Academy of Sciences.

References

  1. 1.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1995) In: Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Piotrovskii LB and Kiselev ON (2006) In: Fullerenes in biology. Publisher house “Rostok”, St. Petersburg, Russia, 336 ppGoogle Scholar
  3. 3.
    Lymkin AI, Petrov EA, Ershov AP, Sakovitch GV, Staver AM, Titov VM (1988) Dokl Akad Nauk USSR 302:611–613Google Scholar
  4. 4.
    Greiner NR, Philips DS, Johnson JD, Volk F (1988) Nature 333:440–442CrossRefGoogle Scholar
  5. 5.
    Vul’A Ya, Dolmatov V Yu, Gruen DM, Shendorova O (eds) (2006) In: Detonation nanodiamonds and related materials. Bibliography index, 2nd issue. Ioffe Physico-Technical Institute, St Petersburg, RussiaGoogle Scholar
  6. 6.
    Aleksensky AE, Baidakova MV, Boiko ME, Davydov V Yu, Vul’ A Ya (1995) Application of diamond and related materials: 3 rd International Conference, Gaithersburg, MD, USA, 21–24 August 1995. NIST Special Publication Issue 885, pp 457–460Google Scholar
  7. 7.
    Detonation nanodiamonds: fabrication, properties and applications: Proceedings of the first International Symposium. St.-Petersburg, Russia, 7–9 July 2003 (2004) Phys Solid State 4: 595–769Google Scholar
  8. 8.
    Gruen D, Shenderova O, Vul’ A Ya (eds) (2005) In: Synthesis, properties and applications of ultrananocrystalline diamond, vol. 192. Springer, DordrechtGoogle Scholar
  9. 9.
    Shendorova OA and Gruen DM (eds) (2006) In: UltraNanocrystalline diamond. Synthesis, properties, and applications. William Andrew Publisher, Norwich, NY, USAGoogle Scholar
  10. 10.
    Aleksenski AE, Yagovkina MA, Vul’ A Ya (2004) Phys Solid State 46:685–686CrossRefGoogle Scholar
  11. 11.
    Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, McGuire G (2007) Diam Rel Mater 16:2098–2103CrossRefGoogle Scholar
  12. 12.
    Pichot V, Comet M, Fousson E, Baras C, Senger A, Le Normand F, Spitzer D (2008) Diam Rel Mater 17:13–22CrossRefGoogle Scholar
  13. 13.
    Shi XQ, Jiang XH, Lu LD, Yang XJ, Wang X (2008) Mater Lett 62:1238–1241CrossRefGoogle Scholar
  14. 14.
    Liu K-K, Cheng C-L, Chang C-C, Chao J-I (2007) Nanotechnology 18:325102 (10 pp)CrossRefGoogle Scholar
  15. 15.
    Burchell TD (ed) (1999) In: Carbon materials for advanced technologies. Elsevier Science Ltd, AmsterdamGoogle Scholar
  16. 16.
    Gamarnik MY (1996) Phys Rev B 54:2150–2156CrossRefGoogle Scholar
  17. 17.
    Badziag P, Verwoerd WS, Ellis WP, Greiner NR (1990) Nature 343:244–245CrossRefGoogle Scholar
  18. 18.
    Raty J-Y, Galli G (2003) Nat Mater 2:792–795CrossRefGoogle Scholar
  19. 19.
    Barnard AS, Russo SP, Snook IK (2003) Philos Mag Lett 83:39–45CrossRefGoogle Scholar
  20. 20.
    Vul’ A Ya (2006) In: Shenderova O, Gruen D (eds), Ultra-nanocrystalline diamond: syntheses, properties and applications. William Andrew Publisher, Norwich, NY, USA, pp 379–404Google Scholar
  21. 21.
    Titov VM, Tolochko BP, Ten KE, Lukyanchikov LA, Pruuel ER (2007) Diam Rel Mater 16:2009–2013CrossRefGoogle Scholar
  22. 22.
    Tolochko BP, Titov VM, Chernyshev AP, Ten KA, Pruuel EP, Zhogin IL, Zubkov PI, Lyakhov NZ, Lukyanchikov LA, Sheromov MA (2007) Diam Rel Mater 16:2014–2017CrossRefGoogle Scholar
  23. 23.
    Danilenko NV (2003) In: Synthesizing and sintering of diamond by explosion. Energoatomizdat, Moscow, Russia, 272 pGoogle Scholar
  24. 24.
    Fenglei H, Yi T, Shourong Y (2004) Phys Solid State 46:616–619CrossRefGoogle Scholar
  25. 25.
    Hawelek L, Brodka A, Dore JC, Honkimaki V, Tomita S, Burian A (2008) Diam Rel Mater 17:1186–1193CrossRefGoogle Scholar
  26. 26.
    Kulakova II (2004) Phys Solid State 46:636–643CrossRefGoogle Scholar
  27. 27.
    Mykhaylyka OO, Solonin YM, Batchelder DN, Brydson RJ (2005) J Appl Phys 97:074302CrossRefGoogle Scholar
  28. 28.
    Alexenskii AE, Baidakova MV, Vul’ A Ya, Davydov V Yu, Pevtsova Yu A (1997) Phys Solid State 39:1007–1015CrossRefGoogle Scholar
  29. 29.
    Dolmatov V Yu, Veretennikova MV, Marchukov VA, Sushchev VG (2004) Phys Solid State 46:611–615CrossRefGoogle Scholar
  30. 30.
    Gubarevich TM, Gamanovich DN (2005) In: Gruen DM, Shenderova OA, Vul’ A Ya (eds) Synthesis, properties and applications of ultrananocrystalline diamond proceedings of the nato advanced research workshop on synthesis, properties and applications of ultrananocrystalline diamond St. Petersburg, Russia June 7–10, 2004, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 192. Springer, Netherlands, pp 337–344Google Scholar
  31. 31.
    Adadurov GA, Bavina TV, Breusov ON, Drobyshev VN, Messinev MJ, Rogacheva AI, Ananiin AV, Apollonov VN, Dremin AN, Doronin VN, Dubovitsky FI, Zemlyakova LG, Pershin SV, Tatsy VF (1984) Method of producing diamond and/or diamond-like modifications of boron nitride. US Patent N4483836: from 20.11.84Google Scholar
  32. 32.
    Filatov LI, Chukhaeva SI, Detkov P Ya (1997) A technology for nanodiamond purification. Patent RU N2077476 from 20.04.97Google Scholar
  33. 33.
    Gubarevich TM, Larionova IS, Kostyukova NM, Ryzhko GA, Turitsyna OF, Pleskach LI, Sataev PP A diamond purification technology. Avt Svid USSR N1770272 from 22.06.92Google Scholar
  34. 34.
    Gubarevich TM, Larionova IS, Sataev PP, Dolmatov V Yu, Pyaterikov VF A technology for purification of nanodiamonds from non-diamond carbon. Avt Svid USSR N1819851 from 12.10.92Google Scholar
  35. 35.
    Dolmatov V Yu, Suschev VG, Aleksandrov MM, Sakovich GV, Vishnevskij EN, Pyaterikov VF, Sataev PP, Komarov VF, Brylyakov PM, Shitenkov NV A way of separating synthetic nanodiamonds. Avt Svid USSR N1828067 from 13.10.92Google Scholar
  36. 36.
    Dolmatov V Yu, Suschev VG, Marchukov VA, Gubarevich TM, Korzhenevskii AP (1998) Method for recovering synthetic ultradispersed diamonds. Patent RU N2109683 from 27.04.98Google Scholar
  37. 37.
    Gubarevich TM, Gamanovich DN (2005) In: Gruen DM, Shenderova O A, Vul’ A Ya (eds) Synthesis, properties and applications of ultrananocrystalline diamond proceedings of the nato advanced research workshop on synthesis, properties and applications of ultrananocrystalline diamond St. Petersburg, Russia, June 7–10, 2004, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 192. Springer, Netherlands, pp 311–320Google Scholar
  38. 38.
    Eryomenko NK, Obraztsova II, Efimov OA, Korobov Yu A, Safonov Yu N, Sidorin Yu Yu (1997) A technology for nanodiamond separation. Patent RU N2081821 from 20.06.97Google Scholar
  39. 39.
    Chiganov AS, Chiganova GA, Tushko Yu M, Staver AM (1993) Purification of detonation diamond. Patent RU N2004491 from 15.12.93Google Scholar
  40. 40.
    Isakova VG, Isakov VP (2004) Phys Solid State 46:622–624CrossRefGoogle Scholar
  41. 41.
    Pavlov EV, Skrjabin JA (1994) Method for removal of impurities of non-diamond carbon and device for its realization. Patent RU N2019502 from 15.09.94Google Scholar
  42. 42.
    Xu K, Xue Q (2004) Phys Solid State 46:649–650CrossRefGoogle Scholar
  43. 43.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Yu (2006) J Am Chem Soc 128:11635–11642CrossRefGoogle Scholar
  44. 44.
    Aleksenski AE, Osipov VYu, Didekin AT, Vul’ A Ya, Andriaenssens G, Afanas’ev VV (2000) Tech Phys Lett 26:819–821CrossRefGoogle Scholar
  45. 45.
    Vul’ A Ya, Golubev VG, Grudinkin SA, Krüger A, Naramoto H (2002) Tech Phys Lett 28:787–789CrossRefGoogle Scholar
  46. 46.
    Baidakova MV, Siklitsky VI, Vul A Ya (1999) Chaos 10:2153–2163Google Scholar
  47. 47.
    Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ A Ya, Ōsawa E (2005) Carbon 43:1722–1730CrossRefGoogle Scholar
  48. 48.
    Vul’ A Ya, Dideykin AT, Tsareva ZG, Korytov MN, Brunkov PN, Zhukov BG, Rozov SI (2006) Tech Phys Lett 32:561–563CrossRefGoogle Scholar
  49. 49.
    Osawa E (2008) Pure Appl Chem 80:1365–1379CrossRefGoogle Scholar
  50. 50.
    Eidelman ED, Siklitsky VI, Sharonova LV, Yagovkina MA, Vul’ A Ya, Takahashi M, Inakuma M, Ozawa M, Ōsawa E (2005) Diam Rel Mater 14:1765–1769CrossRefGoogle Scholar
  51. 51.
    Xu K, Xue Q (2007) Diam Rel Mater 16:277–282CrossRefGoogle Scholar
  52. 52.
    Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G (2006) Diam Rel Mater 15:1799–1803CrossRefGoogle Scholar
  53. 53.
    Kuznetsov VL, Aleksandrov MN, Zagoruiko IV, Chuvilin AL, Moroz EM, Kolomiichuk VN, Likholobov VA, Brylyakov PM, Sakovitch GV (1991) Carbon 29:665–668CrossRefGoogle Scholar
  54. 54.
    Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov ShK, Butenko YuV (1994) Carbon 32:873–882CrossRefGoogle Scholar
  55. 55.
    Aleksenski AE, Badakova MV, Vul’ A Ya, Siklitskii VI (1999) Phys Solid State 41:668–671CrossRefGoogle Scholar
  56. 56.
    Kuznetsov VL, Chuvilin AL, Butenko YuV, Gutakovskii AK, Stankus SV, Khairulin RA (1998) Chem Phys Lett 289:353–360CrossRefGoogle Scholar
  57. 57.
    Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Rao AM, Eklund PC, Oshida K, Endo M (2000) Phys Rev B 62:11209–11218CrossRefGoogle Scholar
  58. 58.
    Raty J-Y, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401CrossRefGoogle Scholar
  59. 59.
    Baidakova M, Vul’ A (2007) J Phys D: Appl Phys 40:1–12CrossRefGoogle Scholar
  60. 60.
    Panich AM, Shames AI, Vieth H-M, Osawa E, Takahashi M, Vul’ A Ya (2006) Eur Phys J B 52:397–402CrossRefGoogle Scholar
  61. 61.
    Jiang T, Xu K (1995) Carbon 33:1663–1671CrossRefGoogle Scholar
  62. 62.
    Barnard A, Sternberg M (2007) J Mater Chem 17:4811–4819CrossRefGoogle Scholar
  63. 63.
    Barnard AS (2008) J Mater Chem 18:4038–4041CrossRefGoogle Scholar
  64. 64.
    Shenderova OA, Zhirnov VV, Brenner DW (2002) Crit Rev Solid State Mater Sci 27:227CrossRefGoogle Scholar
  65. 65.
    Kuznetsov VL, Butenko Yu V (2006) In: Shenderova O, Gruen D (eds) Ultra-nanocrystalline diamond: syntheses, properties and applications. William Andrew Publisher, Norwich, NY, USA, pp 405–475Google Scholar
  66. 66.
    Palosz B, Pantea C, Grzanka E, Stelmakh S, Proffen Th, Zerda TW, Palosz W (2006) Diam Rel Mater 15:1813–1818CrossRefGoogle Scholar
  67. 67.
    Ōsawa E (2007) Diam Rel Mater 16:2018–2022CrossRefGoogle Scholar
  68. 68.
    Krueger A (2008) Chem Eur J 14:1382–1390CrossRefGoogle Scholar
  69. 69.
    Shenderova OA, Zhirnov VV, Brenner DW (2002) Crit Rev Solid State Mater Sci 27:227–356CrossRefGoogle Scholar
  70. 70.
    Ōsawa, E., Ho, D., Huang, H., Korobov, M. V., Rozhkova, N. N. (2009) Diam. Rel. Mater. 18:904–909.CrossRefGoogle Scholar
  71. 71.
    Vul’ A Ya, Eydelman ED, Inakuma M, O¯sawa E (2007) Diam Rel Mater 16:2035–2038CrossRefGoogle Scholar
  72. 72.
    Pichot V, Comet M, Fousson E, Siegert B, Spitzer D (2008) Proceedings of the third International Conference on “Detonation nanodiamonds: technology, properties and applications”, July 1–4 2008. Ioffe Institute, St.-Petersburg, Russia, pp 79–82Google Scholar
  73. 73.
    Alexenskii AE, Baidakova MV, Kempinski W, Osipov VYu, Ōsawa E, Ozawa M, Siklitski VI, Panich AM, Shames AI, Vul’ A Ya (2002) J Phys Chem Solids 63:1993–2001CrossRefGoogle Scholar
  74. 74.
    Alexenskii AE, Baidakova MV, Yagovkina MA, Siklitski VI, Vul’ A Ya, Naramoto H, Lavrentiev VI (2004) Diam Rel Mater 13:2076–2080CrossRefGoogle Scholar
  75. 75.
    Alexensky AE, Yagovkina MA, Vul’ A Ya (2006) Method of nanodiamond purification. Patent RU N2322389 from 13.10.06Google Scholar
  76. 76.
    Osipov V Yu, Enoki T, Takai K, Takahara K, Endo M, Hayashi T, Hishiyama Y, Kaburagi Y, Vul’ A Ya (2006) Carbon 44:1225–1234CrossRefGoogle Scholar
  77. 77.
    Osipov VYu, Shames AI, Enoki T, Takai K, Baidakova MV, Vul’A Ya (2007) Diam Rel Mater 16:2035–2038CrossRefGoogle Scholar
  78. 78.
    Ando T, Ishii M, Kamo M, Sato Y (1993) Chem Soc Faradey Trans 89:1783–1789CrossRefGoogle Scholar
  79. 79.
    Baidakova MV, Osipov V Yu, Katsuyama C, Takai K, Enoki T, Yonemoto A, Touhara H, Vul’ A Ya (2007) In: Saito G, Wudl F, Haddon RC, Tanigaki K, Enoki T, Katz HE, Maesato M (eds) Multifunctional conducting molecular materials. The Royal Society of Chemistry, UK, pp 224–231Google Scholar
  80. 80.
    Byrappa K, Yoshimura M, Haber M (2001) Handbook of hydrothermal technology. William Andrew Publisher, Norwich, NY, USA, 893 ppGoogle Scholar
  81. 81.
    Ji S, Jiang T, Xu K, Li S (1998) Appl Surf Sci 133:231–238CrossRefGoogle Scholar
  82. 82.
    Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Diam Rel Mater 15:622–625CrossRefGoogle Scholar
  83. 83.
    Nakanishi K (1962) In: Infrared absorption spectroscopy: practical. Holden-Day, USA, 233 ppGoogle Scholar
  84. 84.
    Zhu YW, Shen XQ, Wang BC, Xu XY, Feng ZJ (2004) Phys Solid State 46:681–684CrossRefGoogle Scholar
  85. 85.
    Ray MA, Shenderova O, Hook W, Martin A, Grishko V, Tyler T, Cunningham GB, McGuire G (2006) Diam Rel Mater 15:1809–1812CrossRefGoogle Scholar
  86. 86.
    Larionova I, Kuznetsov V, Frolov A, Shenderova O, Moseekov S, Mazov I (2006) Diam Rel Mater 15:1804–1808CrossRefGoogle Scholar
  87. 87.
    Korolkov VV, Kulakova II, Tarasevich BN, Lisihkin GV (2007) Diam Rel Mater 16:2129–2132CrossRefGoogle Scholar
  88. 88.
    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L (2007) Phys Stat Solids A 204:2881–2887CrossRefGoogle Scholar
  89. 89.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) NanoLetters 7:3305–3314Google Scholar
  90. 90.
    Grichko V, Shenderova O (2006) In: Shenderova O, Gruen D (eds) Ultra-nanocrystalline diamond: syntheses, properties and applications. William Andrew Publisher, Norwich, NY, USA, pp 529–557Google Scholar
  91. 91.
    Spitsyn BV, Gradoboev MN, Galushko TB, Karpukhina TA, Serebryakova NV, Kulakova II, Melnik NN (2005) In: Shenderova O, Gruen D, Vul’ A Ya (eds) Synthesis, properties and applications of ultrananocrystalline diamond, vol. 192. Springer, Dordrecht, pp 241–252CrossRefGoogle Scholar
  92. 92.
    Alexensky AE, Vul AYa, Yagovkina MA (2006) 17 European conference on diamond-like materials, carbon nanotubes and nitrides. September 3–8, 2006, Estoril, Portugal. Abstract Book. Abstract 15.2.08Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alexander Aleksenskiy
    • 1
  • Marina Baidakova
    • 1
  • Vladimir Osipov
    • 1
  • Alexander Vul’
    • 1
  1. 1.Ioffe Physico-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations