Molecular Dynamics Simulations of Nanodiamond Graphitization

  • Shashishekar P. Adiga
  • Larry A. Curtiss
  • Dieter M. Gruen


Nanocarbons have attracted great interest due to their potential applications in nanoscale devices, medicine, lubrication and composite materials. Recently, nanocarbons with a variety of morphologies are reported to have been obtained after annealing nanodiamonds above 1,200 K. Here, we have investigated the transformation of 2–5 nm nanodiamond particles upon annealing using molecular dynamics simulations. The simulations show that nanodiamonds undergo annealing-induced graphitization by a progressive sp3 to sp2 conversion of carbon atoms that begins at the surface. The extent of this conversion depends on the size and morphology of the nanodiamond. It is found that while graphitization proceeds easily from {111} surfaces towards the core, the presence of {100} surfaces leads to residual sp3 carbon atoms. We will also discuss different steps involved in nanodiamond graphitization, the formation of onion-like carbon and vibrational spectra of these structures.


High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Radial Distribution Function Diamond Particle Velocity Auto Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the US Department of Energy’s Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Use of computer resources from Argonne National Laboratory Computer Resource Center and US DOE National Energy Research Supercomputer Center is gratefully acknowledged.


  1. 1.
    Kroto HW, Heath JR, O’brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163CrossRefGoogle Scholar
  2. 2.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  3. 3.
    Gruen DM, Liu S, Krauss AR, Luo J, Pan X (1994) Appl Phys Lett 64:1502–1504CrossRefGoogle Scholar
  4. 4.
    Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165–170CrossRefGoogle Scholar
  5. 5.
    Ugarte D (1992) Nature 359:707–709CrossRefGoogle Scholar
  6. 6.
    Lewis RS, Tang M, Wacker JF, Anders E, Steel E (1987) Nature 326:160–162CrossRefGoogle Scholar
  7. 7.
    Dai ZR, Bradley JP, Joswiak DJ, Brownlee DE, Hill HGM, Genge MJ (2002) Nature 418:157–159CrossRefGoogle Scholar
  8. 8.
    Greiner NR, Philips DS, Johnson JD, Volk F (1988) Nature 333:440–442CrossRefGoogle Scholar
  9. 9.
    Vereschagin AL, Sakovich GV, Komarov VF, Petrov EA (1993) Diam Relat Mater 3:160–162CrossRefGoogle Scholar
  10. 10.
    Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov ShK, Butenko YuV (1994) Carbon 32:873–882CrossRefGoogle Scholar
  11. 11.
    Artemov AS (2004) Phys Solid State 46:687–695CrossRefGoogle Scholar
  12. 12.
    Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Diam Relat Mater 16:1213–1217CrossRefGoogle Scholar
  13. 13.
    Dolmatov VY (2001) Russ Chem Rev 70:607–626CrossRefGoogle Scholar
  14. 14.
    Schrand AM, Huang H, Carlson C, Schlager JJ, Sawa EO, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7CrossRefGoogle Scholar
  15. 15.
    Khabashesku VN, Margrave JL, Barrera EV (2005) Diam Relat Mater 14:859–866CrossRefGoogle Scholar
  16. 16.
    Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) J Am Chem Soc 126:6850–6851CrossRefGoogle Scholar
  17. 17.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314CrossRefGoogle Scholar
  18. 18.
    Narayan RJ, Wei W, Jin C, Andara M, Agarwal A, Gerhardt RA, Shih CC, Shih CM, Lin SJ, Su YY, Ramamurti Y, Singh RN (2006) Diam Relat Mater 15:1935–1940CrossRefGoogle Scholar
  19. 19.
    Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  20. 20.
    Kuznetsov VL, Chuvilina AL, Butenkoa YV, Stankusb SV, Khairulinb RA, Gutakovskiic AK (1998) Chem Phys Lett 289:353–360CrossRefGoogle Scholar
  21. 21.
    Tomita S, Burian A, Dore JC, LeBolloch D, Fujii M, Hayashi S (2002) Carbon 40:1469–1474CrossRefGoogle Scholar
  22. 22.
    Kuznetsov VL, Chuvilin AL, Butenko YV, Malkov IY, Titov VM (1994) Chem Phys Lett 222:343–348CrossRefGoogle Scholar
  23. 23.
    Aleksenskii AE, Baidakova MV, Vul’ A Ya, Siklitskii VI (1999) Phys Solid State 41:668–671CrossRefGoogle Scholar
  24. 24.
    Banhart F, Fuller T, Redlich Ph, Ajayan PM (1997) Chem Phys Lett 269:349–355CrossRefGoogle Scholar
  25. 25.
    Mykhaylyk OO, Solonin YM, Batchelder DN, Brydson R (2005) J Appl Phys 97:074302CrossRefGoogle Scholar
  26. 26.
    Fugaciu F, Herman H, Deifert G (1999) Phys Rev B 60:10711–10714CrossRefGoogle Scholar
  27. 27.
    Lee GD, Wang CZ, Yu J, Yoon E, Ho KM (2003) Phys Rev Lett 91(26):265–701Google Scholar
  28. 28.
    Bro’Dka A, Zerda TW, Burian A (2006) Diam Relat Mater 15:1818–1821CrossRefGoogle Scholar
  29. 29.
    Leyssale J-M, Vignoles GL (2008) Chem Phys Lett 454:299–304CrossRefGoogle Scholar
  30. 30.
    Barnard AS, Russo SP, Snook IK (2003) Diam Relat Mater 12:1867–1872CrossRefGoogle Scholar
  31. 31.
    Barnard AS, Russo SP, Snook IK (2003) Phys Rev B 68:073406CrossRefGoogle Scholar
  32. 32.
    Barnard AS (2006) Stability of Nanodiamond In: Shenderova OA, Gruen DM (eds),Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew Publishing, New York, pp 117–154Google Scholar
  33. 33.
    Hu Y, Shenderova OA, Hu Z, Padgett CW, Brenner DW (2006) Rep Prog Phys 6:1847–1895CrossRefGoogle Scholar
  34. 34.
    Raty JY, Galli G (2003) Nat Mater 2:792–795CrossRefGoogle Scholar
  35. 35.
    Raty JY, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401CrossRefGoogle Scholar
  36. 36.
    Barnard AS, Sternberg M (2007) J Mater Chem 17:4811–4819CrossRefGoogle Scholar
  37. 37.
    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys: Condens Matter 14:783–802CrossRefGoogle Scholar
  38. 38.
    Mao Z, Garg A, Sinnott SB (1999) Nanotechnology 3:273–277CrossRefGoogle Scholar
  39. 39.
    Adelman SA, Doll JD (1976) J Chem Phys 64:2375–2388CrossRefGoogle Scholar
  40. 40.
    Tyler T, Zhirnov VV, Kvit AV, Kang D, Hren JJ (2003) Appl Phys Lett 82:2904–2906CrossRefGoogle Scholar
  41. 41.
    Pandey KC (1982) Phys Rev B 25:4338–4341CrossRefGoogle Scholar
  42. 42.
    Zapol P, Curtiss LA, Tamura H, Gordon MS (2004) Theoretical studies of growth reactions on diamond surfaces In: Curtiss LA, Gordon MS (eds) Computational materials chemistry: methods and applications. Kluwer Academic Publishers, London, pp 266–307Google Scholar
  43. 43.
    Tomita S, Fuji M, Hayashi S (2002) Phys Rev B 66:245–424Google Scholar
  44. 44.
    Tomita SS, Fuji M, Hayashi S, Yamamoto K (1999) Chem Phys Lett 305:225–229CrossRefGoogle Scholar
  45. 45.
    Vita AD, Galli G, Canning A, Car R (1996) Nature 379:523–526CrossRefGoogle Scholar
  46. 46.
    Wang CZ, Ho KM, Shirk MD, Molian PA (2000) Phys Rev Lett 85:4092–4095CrossRefGoogle Scholar
  47. 47.
    Jungnickel G, Porezag D, Frauenheim Th, Heggie MI, Lambrecht WRL, Segall B, Angus JC (1996) Phys Status Solidi A 154:109–125CrossRefGoogle Scholar
  48. 48.
    Kuznetsov VL, Zilberberg IL, Butenko YuV, Chuvilin AL, Segall B (1999) J Appl Phys 86:863–870CrossRefGoogle Scholar
  49. 49.
    Qian J, Pantea C, Huang J, Zerda TW, Zhao Y (2004) Carbon 42:2691–2697CrossRefGoogle Scholar
  50. 50.
    Qiao Z, Li J, Zhao N, Shi C, Nash P (2006) Scr Mater 54:225–229CrossRefGoogle Scholar
  51. 51.
    Pantea C, Qian J, Voronin GA, Zerda TW (2002) J Appl Phys 91:1957–1962CrossRefGoogle Scholar
  52. 52.
    Chen PW, Ding YS, Chen Q, Huang FL, Yun SR (2000) Diam Relat Mater 9:1722–1725CrossRefGoogle Scholar
  53. 53.
    Xu NS, Chen J, Deng SZ (2002) Diam Relat Mater 11:249–256CrossRefGoogle Scholar
  54. 54.
    Russo SP, Barnard AS, Snook IK (2003) Surf Rev Lett 10:233–239CrossRefGoogle Scholar
  55. 55.
    Banhart F, Ajayan PM (1996) Nature 382:433–435CrossRefGoogle Scholar
  56. 56.
    Banhart F (1997) J Appl Phys 81:3440–3445CrossRefGoogle Scholar
  57. 57.
    Davison BN, Picket W (1994) Phys Rev B 49:14770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shashishekar P. Adiga
    • 1
  • Larry A. Curtiss
    • 1
  • Dieter M. Gruen
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations