Nanodiamonds pp 249-284 | Cite as

Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications

  • Wing Kam Liu
  • Ashfaq Adnan
  • Adrian M. Kopacz
  • Michelle Hallikainen
  • Dean Ho
  • Robert Lam
  • Jessica Lee
  • Ted Belytschko
  • George Schatz
  • Yonhua Tzeng
  • Young-Jin Kim
  • Seunghyun Baik
  • Moon Ki Kim
  • Taesung Kim
  • Junghoon Lee
  • Eung-Soo Hwang
  • Seyoung Im
  • Eiji Ōsawa
  • Amanda Barnard
  • Huan-Cheng Chang
  • Chia-Ching Chang
  • Eugenio Oñate


The onset and recurrence of cancer is one of the major biomedical quandaries of our time. Currently, surgically removed tumors often leave behind a residual cancer cell population. As not all cancer cells can be detected to ensure complete tumor removal, systemic and widespread chemotherapy is usually injected into the ­bloodstream to attempt to target the remaining cancer cells. This can result in ­devastating side effects because the cancer drugs flow freely throughout the bloodstream with a reduced ability to target-specific regions. This treatment kills both healthy and unhealthy cells, and thus the quality of life of cancer patients is significantly reduced.


Drug Release Radio Frequency Power Diamond Growth Edgeworth Expansion Radio Frequency Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial Support from the US National Science Foundation and the World Class University program (R33-10079) under the Ministry of Education, Science and Technology, Republic of Korea, are greatly appreciated.


  1. 1.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int ed 40:4128–4158CrossRefGoogle Scholar
  2. 2.
    Michalet X, Pinaud FF, Bentolila LA, Tsay M, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells and in vivo imaging. Diagnostics and beyond. Science 307:538–544CrossRefGoogle Scholar
  3. 3.
    Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862CrossRefGoogle Scholar
  4. 4.
    Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injective thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Rel 63:155–163CrossRefGoogle Scholar
  5. 5.
    Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug delivery. Bioconj Chem 6:332–351CrossRefGoogle Scholar
  6. 6.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7:3305–3314CrossRefGoogle Scholar
  7. 7.
    Huang H, Pierstorff E, Osawa E, Ho D (2008) Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2:203–212CrossRefGoogle Scholar
  8. 8.
    Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diamond Relat Mater 16(12):2018–2022CrossRefGoogle Scholar
  9. 9.
    Dolmatov VY (2006) Applications of detonation nanodiamond. Ultrananocryst; Diamond, 477–527Google Scholar
  10. 10.
    Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80:4659–4665CrossRefGoogle Scholar
  11. 11.
    Sakurai H, Ebihara N, Osawa E, Takahashi M, Fujinami M, Oguma K (2006) Adsorption characteristics of a nanodiamond for oxoacid anions and their application to the selective preconcentration of tungstate in water samples. Anal Sci 22:357–362CrossRefGoogle Scholar
  12. 12.
    Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24(8):4200–4204CrossRefGoogle Scholar
  13. 13.
    Krueger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalization of detonation diamond suitable for biological applications. J Mater Chem 16(24):2322–2328CrossRefGoogle Scholar
  14. 14.
    Barnard AS (2006) Theory and modeling of nanocarbon phase stability. Diamond and Related Materials 15(2–3):285–291CrossRefGoogle Scholar
  15. 15.
    Barnard AS (2008) Self-assembly in nanodiamond agglutinates. J Mater Chem 18(34):4038–4041CrossRefGoogle Scholar
  16. 16.
    Mielke SL, Belytschko T, Schatz GC (2007) Nanoscale fracture mechanics. Annu Rev Phys Chem 58:185–209CrossRefGoogle Scholar
  17. 17.
    Paci JT, Belytschko T, Schatz GC (2006) Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: a theoretical study. Phys Rev B 74:184112-1–184112-9Google Scholar
  18. 18.
    Osawa E (2008) Monodisperse single nanodiamond particulates. Pure Appl Chem 80(7):1365–1379CrossRefGoogle Scholar
  19. 19.
    Barnard AS, Vlasov II, Ralchenko VG (2009) Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J Mater Chem 19(3):360–365CrossRefGoogle Scholar
  20. 20.
    Barnard AS, Sternberg M (2008) Vacancy induced structural changes in diamond nanoparticles. Journal of Computational and Theoretical Nanoscience 5(11):2089–2095CrossRefGoogle Scholar
  21. 21.
    Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology 3(5):284–288CrossRefGoogle Scholar
  22. 22.
    Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104(3):727–732CrossRefGoogle Scholar
  23. 23.
    Sumant AV, Grierson DS, Gerbi JE, Birrell J, Lanke UD, Auciello O, Carlisle JA, Carpick RW (2005) Toward the ultimate tribological interface: surface chemical optimization and nanoscale single asperity properties of ultrananocrystalline diamond. Adv Mat 17:1039–1045CrossRefGoogle Scholar
  24. 24.
    Naguib NN, Elam JW, Birrell J, Wang J, Grierson DS, Kabius B, Hiller JM, Sumant AV, Carpick RW, Auciello O, Carlisle JA (2006) The use of tungsten interlayers to enhance the initial nucleation and conformality of ultrananocrystalline diamond (UNCD) thin films. Chem Phys Lett 430:345–50CrossRefGoogle Scholar
  25. 25.
    Sumant AV, Gilbert PUPA, Grierson DS, Konicek AR, Abrecht M, Butler JE, Feygelson T, Rotter SS, Carpick RW (2007) Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films. Diam Rel Mat 16:718–24CrossRefGoogle Scholar
  26. 26.
    Lee W, Jang S, Kim MJ, Myoung J-M (2008) Interfacial interactions and dispersion relations in carbon-aluminium nanocomposite systems. Nanotechnology 19:285701-1–285701-13Google Scholar
  27. 27.
    Steager EB, Kim C-B, Kim MJ (2008) Temperature effects on swarming flagellated bacteria in microfluidic environments. J Heat Transfer 130:080908–1CrossRefGoogle Scholar
  28. 28.
    Kim YS, Liao KS, Jan CJ, Bergbreiter DE, Grunlan JC (2006) “Conductive thin films on functionalized polyethylene particles. Chem Mat 18:2997–3004CrossRefGoogle Scholar
  29. 29.
    Jan CJ, Walton MD, McConnell EP, Jang WS, Kim YS, Grunlan JC (2006) Carbon black thin films with tunable resistance and optical transparency. Carbon 44:1974–1981CrossRefGoogle Scholar
  30. 30.
    Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Rel 116:83–89CrossRefGoogle Scholar
  31. 31.
    Zhang J, Zimmer JW, Howe RT, Maboudian R (2008) Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diam and Rel Mat 17:23–28CrossRefGoogle Scholar
  32. 32.
    Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146CrossRefGoogle Scholar
  33. 33.
    Yang Y, Zeng C, Lee LJ (2004) Three-dimensional assembly of polymer microstructures at low temperatures. Adv Mat 16:560–564CrossRefGoogle Scholar
  34. 34.
    Qi L, Gao X (2008) Quantum dot − amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano , DOI:  10.1021/nn800280r
  35. 35.
    Discher DE, Ahmed F (2006) Polymersomes. Ann Rev Bio Eng 8:323–341CrossRefGoogle Scholar
  36. 36.
    Geng Y, Discher DE (2005) Hydrolytic shortening of polycaprolactone-block-(polyethylene oxide) worm micelles. J Am Chem Soc 127:12780–12781CrossRefGoogle Scholar
  37. 37.
    Ahmed F, Discher DE (2004) Controlled release from polymersome vesicles blended with PEO-PLA or related hydrolysable copolymer. J Control Rel 96:37–53CrossRefGoogle Scholar
  38. 38.
    Discher DE, Eisenberg A (2002) Polymer Vesicles Science 297:967–973Google Scholar
  39. 39.
    Lam R, Chen M, Pierstorff E, Huang H, Osawa E, Ho D (2008) Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2:2095–2102CrossRefGoogle Scholar
  40. 40.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRefGoogle Scholar
  41. 41.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  42. 42.
    Bianco A, Prato M (2003) Can carbon nanotubes be considered usefull tools for biological applications? Adv Mat 15:1765–1768CrossRefGoogle Scholar
  43. 43.
    Bowden T, Tabor D (1961) Friction and lubrication in solids, Japanese edition. Maruzen, Tokyo, p 27Google Scholar
  44. 44.
    S Mori, A Kanno, H Nanao, I Minami, E O¯sawa, Tribological performance of nanodiamond for water lubrication, Proceedings of the 3 rd International Symposium on Detonation Nanodiamonds: Technology, Properties and Applications, July 1–4, 2008, St. Petersburg, Russia, p. 21–28, Ioffe Physico-Technical InstituteGoogle Scholar
  45. 45.
    O¯sawa E, Ho D, Huang H, Korobov MV, Rozhkova NN (2009) “Consequences of strong and diverse electrostatic potential field on the surface of detonation nanodiamond particles,”Diam Rel Mater, 18, 10.1016/j.diamond.2009.01.025 .
  46. 46.
    Qian D, Liu WK, Zheng Q (2008) Concurrent quantum/continuum coupling analysis of nanostructures. Comput Methods Appl Mech Eng 197(41–42):3291–3323MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Kopacz AM, Liu WK, Liu ShuQ (2008) Simulation and prediction of endothelial cell adhesion modulated by molecular engineering. Comput Meth Appl Mech Eng 197(25–28):2340–2352MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Liu Y, Kieseok Oh, Bai JG, Chang C-L, Yeo W, Chung J-H, Lee K-H, Liu WK (2008) Manipulation of nanoparticles and biomolecules by electric field and surface tension. Comput Meth Appl Mech Eng 197(25–28):2156–2172MATHCrossRefGoogle Scholar
  49. 49.
    Liu WK, Jun S, Qian D (2008) Computational nanomechanics of materials. Journal of Computational and Theoretical Nanoscience 5(970–996):2008Google Scholar
  50. 50.
    Liu WK, Kim Do Wan, Tang S (2007) Mathematical foundations of the immersed finite element method. Computational Mechanics 39(3):211–222MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    WK Liu, Liu Y, Farrell D, et al (2006) Immersed finite element method and applications to biological systems. Comp Meth Appl Mech Eng, 195(1722-1749),Google Scholar
  52. 52.
    Liu WK, Sukky J, Qian D (2006) Computational nanomechanics of materials, Handbook of theoretical and computational nanotechnology, M Reith and W Schommers (Eds). 4, 132–191, American Scientific PublishersGoogle Scholar
  53. 53.
    Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Comput Meth Appl Mech Eng 195(13–16):1407–1421MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Computer method in applied mechanics and engineering 195:1404–1421MathSciNetGoogle Scholar
  55. 55.
    Park HS, Karpov EG, Liu WK (2005) Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations. Int J Numer Meth Eng 64:237–259MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    WK Liu, HS Park, D Qian, EG Karpov, H Kadowaki, GJ Wagner. Bridging Scale Methods for Nanomechanics and Materials”, accepted for publication in Comput Meth Appl Mech Eng 2005, special issue in honor of the 60th birthday of Prof. T.J.R. Hughes.Google Scholar
  57. 57.
    Park HS, Karpov EG, Klein PA, Liu WK (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Phil Mag 85(1):79–113CrossRefGoogle Scholar
  58. 58.
    Park HS, Karpov EG, Liu WK, Klein PA (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Phil Mag 85(1):79–113CrossRefGoogle Scholar
  59. 59.
    Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207:588–609MATHCrossRefGoogle Scholar
  60. 60.
    Applied Mechanics and Enineering. 198 (15-16), pp 1327–1337, March 2009Google Scholar
  61. 61.
    Barnard AS, Russo SP, Snook IK (2005) J Comput Theor Nanosci 2:180CrossRefGoogle Scholar
  62. 62.
    AS Barnard, SP Russo, IK Snook (2003) J Chem Phys 118, 5094; AS Barnard, SP Russo, IK Snook (2003) Phys Rev B 68, 073406Google Scholar
  63. 63.
    AS Barnard, SP Russo, IK Snook (2003) Philos Mag Lett 83, 39; AS Barnard, SP Russo, IK Snook (2004) Diamond Relat Mater 12, 1867Google Scholar
  64. 64.
    Barnard AS, Zapol PJ (2004) Chem Phys 121:4276Google Scholar
  65. 65.
    AS Barnard, SP Russo, IK Snook (2003) Phys Rev B 68, 073406CrossRefGoogle Scholar
  66. 66.
    AS Barnard, SP Russo, IK Snook (2003) Int J Mod Phys B 17 (21) 3865CrossRefGoogle Scholar
  67. 67.
    Barnard AS, Sternberg M (2007) J Mater Chem 17:4811CrossRefGoogle Scholar
  68. 68.
    Barnard AS (2008) J Mater Chem 18:4038CrossRefGoogle Scholar
  69. 69.
    Harold P Bovenkerk, Thomas R Anthony, James F Fleischer, William F Banholzer, CVD diamond by alternating chemical reactions, US patent 5,302,231, 12 april 1994Google Scholar
  70. 70.
    Dieter M Gruen, Thomas G McCauley, Dan Zhou, Alan R Krauss, Tailoring nanocrystalline diamond film properties US patent, 6,592,839, 15 July 2003Google Scholar
  71. 71.
    Li H, Tao Xu, Chen J, Zhou H, Liu H (2003) Preparation and characterization of hydrogenated diamond-like carbon films in a dual DC-RF plasma system. J Phys D: Appl Phys 36:3183–3190CrossRefGoogle Scholar
  72. 72.
    Synthesis and Application of Nano-crystalline Diamond Thin Film, KISTI reports, 2005Google Scholar
  73. 73.
    Baik E-S, Baik Y-J, Lee SW, Jeon D (2000) Fabrication of diamond nano-whiskers. Thin Solid Films 377–378:295–298CrossRefGoogle Scholar
  74. 74.
    Remes Z, Kromka A, Vanecek M, Grinevich A, Hartmannova H, Kmoch S (2007) The RF plasma surface chemical modification of nanodiamond films grown on glass and silicon at low temperature. Diamond & Related Materials 16:671–674CrossRefGoogle Scholar
  75. 75.
    Hirakuri KK, Minorikawa T, Friedbacher G, Grasserbauer M (1997) Thin film characterization of diamond-like carbon films prepared by r.f. plasma chemical vapor deposition. Thin Solid Films 302:5–11CrossRefGoogle Scholar
  76. 76.
    Krueger A (2008) New carbon materials. Chem Eur J 14:1382–1390CrossRefGoogle Scholar
  77. 77.
  78. 78.
    Hall P (1992) The bootstrap and edgeworth expansion. Springer Series in Statistics. Springer-Verlog, New YorkGoogle Scholar
  79. 79.
    Kennedy MC, A O’Hagan (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society Series B 63, 425–464.MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Xiong Y, Chen W, Tsui K-L, Apley D (2009) A better understanding of model updating strategies in validating engineering models. Comput Meth Appl Mech Eng 198(15–16):1327–1337CrossRefGoogle Scholar
  81. 81.
    Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Ya. Vul A, Osawa E (2005) Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43:1722–1730CrossRefGoogle Scholar
  82. 82.
    Panich AM, Shames AI, Vieth HM, Osawa E, Takahashi M, Ya Vul A (2006) Nuclear magnetic resonance study of ultrananocrystalline diamonds. Eur Phys J B 52:397–402CrossRefGoogle Scholar
  83. 83.
    M Gruen, Shenderova O (2005) Synthesis, properties and applications of ultrananocrystalline nanodiamond. Springer, USA. 217–230Google Scholar
  84. 84.
    Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nature mater 2:338CrossRefGoogle Scholar
  85. 85.
    Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Science 302:1545CrossRefGoogle Scholar
  86. 86.
    Hwang ES, Cao C, Hong S, Jung HJ, Cha CY, Choi JB, Kim YJ, Baik S (2006) Nanotechnol 17:3442CrossRefGoogle Scholar
  87. 87.
    Chengfan Cao, Jung Heon Kim, Ye-Jin Kwon, Young-Jin Kim, Eung-Soo Hwang and Seunghyun Baik (2009) An immunoassay using biotinylated single walled carbon nanotubes as Raman biomarkers, Accepted to Analyst.Google Scholar
  88. 88.
    Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90:163903 (SCI)CrossRefGoogle Scholar
  89. 89.
    Hunter RJ (1981) Zeta potential in colloidal science. Academic, LondonGoogle Scholar
  90. 90.
    Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Roadmap for nanodiamond-based drug delivery design for cancer therapeutics and diagnostics, 10th US National Congress On Computational Mechanics, Columbus, OH, 2009Google Scholar
  91. 91.
    Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz (2009) Design of nanodiamond-enabled drug delivery system by simulation based science & engineering, ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19.Google Scholar
  92. 92.
    Wing Kam Liu, Multiscale design of nanodiamond-based drug delivery system for engineered medicine, coupled problems 2009, Computational Methods For Coupled Problems In Science And Engineering, 8–10 June 2009, Ischia Island, Italy.Google Scholar
  93. 93.
    Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Nanoscale Science In Therapeutic And Diagnostic Applications 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009.Google Scholar
  94. 94.
    Adnan A, Kam Liu Wing (2009) Mechanics of pH mediated adsorption/desorption of doxorubicin drug from functionalized nanodiamond. 10th US National Congress On Computational Mechanics, Columbus, OHGoogle Scholar
  95. 95.
    Kopacz A, Adnan A, Kam Liu W (2009) Functionalized & self-assembled nanodiamonds for diagnostic and therapeutic applications. 10th US National Congress On Computational Mechanics, Columbus, OHGoogle Scholar
  96. 96.
    Wing Kam Liu, Ashfaq Adnan (2009) Nanoscale science in therapeutic and diagnostic applications. 10th US National Congress On Computational Mechanics, Columbus, OHGoogle Scholar
  97. 97.
    Ashfaq Adnan, Wing Kam Liu (2009) Mechanics of pH controlled loading and release of chemotherapeutics from functionalized nanodiamond, 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009Google Scholar
  98. 98.
    Michelle Hallikainen, Ashfaq Adnan, Wing Kam Liu, Predicting nanodiamond structure and surface charge distribution using molecular dynamics and Bayesian statistics. 10th US National Congress On Computational Mechanics, Columbus, OH, 2009Google Scholar
  99. 99.
    Adrian Kopacz, Ashfaq Adnan, Wing Kam Liu (2009) Equilibrium functionalization and self-assembly of nanodiamond as a platform for engineered medicine”, 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009Google Scholar
  100. 100.
    Paul Arendt, Wei Chen, Wing Kam Liu, Ashfaq Adnan, Multiscale design of a simplified nanodiamond based drug delivery system. 10th US National Congress On Computational Mechanics, Columbus, OH, 2009Google Scholar
  101. 101.
    Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Young-Jin Kim, Moon Ki Kim, Multiscale design of nanodiamond-based drug delivery system for cancer therapeutics and diagnostics. 2nd International Symposium On Computational Mechanics (ISCM II) and 12th International Conference On Enhancement And Promotion Of Computational Methods In Engineering And Science (EPMESC XII), November 30 – December 3, 2009, Hong Kong – MacauGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wing Kam Liu
    • 1
  • Ashfaq Adnan
    • 1
  • Adrian M. Kopacz
    • 1
  • Michelle Hallikainen
    • 1
  • Dean Ho
    • 1
  • Robert Lam
    • 1
  • Jessica Lee
    • 1
  • Ted Belytschko
    • 1
  • George Schatz
    • 1
  • Yonhua Tzeng
    • 2
  • Young-Jin Kim
    • 3
  • Seunghyun Baik
    • 3
  • Moon Ki Kim
    • 3
  • Taesung Kim
    • 3
  • Junghoon Lee
    • 4
  • Eung-Soo Hwang
    • 4
  • Seyoung Im
    • 5
  • Eiji Ōsawa
    • 6
  • Amanda Barnard
    • 7
  • Huan-Cheng Chang
    • 8
  • Chia-Ching Chang
    • 9
  • Eugenio Oñate
    • 10
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.National Cheng Kung University (NCKU)TainanTaiwan
  3. 3.Sungkyunkwan University (SKKU)SeoulSouth Korea
  4. 4.Seoul National University (SNU)SeoulSouth Korea
  5. 5.Korea Advanced Institute of Science and Technology (KAIST)Daedeok Science TownSouth Korea
  6. 6.Nanocarbon Research Institute (NCRI), Shinshu UniversityNagano PrefectureJapan
  7. 7.Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonAustralia
  8. 8.Institute for Advanced and Molecular Studies (IAMS), Academia SinicaTaipeiTaiwan
  9. 9.National Chiao Tung University (NCTU)HsinchuTaiwan
  10. 10.International Center for Numerical Methods in Engineering (CIMNE)BarcelonaSpain

Personalised recommendations