Single-Nano Buckydiamond Particles

Synthesis Strategies, Characterization Methodologies and Emerging Applications
  • Eiji Ōsawa


This Chapter presents a brief overview of a long history and recent rapid developments of the so-called detonation nanodiamond. Although this new version of artificial diamond was discovered as early as 1963, it became a victim of secret research under a military regime, during which there was no exposure to scientific community, and virtually no meaningful progress was made until about 1990. Confusion continued until 2005, when the primary particle was isolated for the first time in dispersed form. The dark age of detonation nanodiamond was briefly summarized in Sect. 1.1. Bitter experience on the hazard of secretive custom in technology prompted us to disclose details of isolation procedure, to which the Sect. 1.2 is devoted. Nevertheless, unexpected difficulties in nanoparticles prevented us to make fast progress in its development. Only in 2007–2008, an illuminative guide was presented by theoreticians regarding geometrical and electronic structures in the primary particles of detonation nanodiamond, which solved most of its mysterious beha­viors that we encountered in the past. This lucky incidence is mentioned in Sect. 1.3 together with our provisional extention of the theory. Three potential Applications are reviewed in the light of the new theoretical model in the penultimate section. Section 1.5 refers to future directions of production and applications.


Primary Particle Colloidal Solution Diamond Film Diamond Particle Bead Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Professor Dr. A. Krüger performed the first experiments on nanodiamond in my laboratory in Toyohashi University of Technolgy. In NanoCarbon Research Institute, Mr. F. Kataoka played a vital role in introducing beads milling method, and Mr. M. Takahashi optimized the milling conditions to enable industrial production of SNBD. Virtually all applications were found by friends outside my own group: drug carrier action by Dr. H. Huang and Prof. D. Ho, CVD seeding by Dr. O. Williams, novel lubrication system by four Japanese research groups (vide supra), hard masking by a group led by Dr. Ch. Nebel. Special thanks are due to Dr. K. Uemura for untiring moral and technical supports. Generous funding was provided by MEXT, NEDO, JST, Futaba Corporation, and Nippon Kayaku Co.


  1. 1.
    Danilenko VV (2004) Phys Solid State 46:595–599CrossRefGoogle Scholar
  2. 2.
    Ōsawa E (2008) Pure Appl Chem 80:1365–1379CrossRefGoogle Scholar
  3. 3.
    Ōsawa E (2007) Diam Relat Mater 16:2018–2022CrossRefGoogle Scholar
  4. 4.
    Aleksenski AE, Baidakova M, Vul’ A Ya, Siklitski VI (1999) Phys Solid State 41:668–671CrossRefGoogle Scholar
  5. 5.
    Baidakova MV, Siklitsky VI, Vul’ A Ya (1999) Chaos Solitons Fractals 10:2153–2163CrossRefGoogle Scholar
  6. 6.
    Donnet J-B, Lemoigne C, Wang TK, Peng C-M, Samirant M, Eckhardt A (1997) Bull Soc Chim Fr 134:875–890Google Scholar
  7. 7.
    Shenderov OA, Zhirmov VV, Brenner DW (2002) Crit Rev Solid State Mater Sci 27:227–356CrossRefGoogle Scholar
  8. 8.
    Krüger A, Kataoka F, Ozawa M, Aksenskii A, Vul’ YA, Fjino Y, Suzuki A, O¯sawa E (2005) Carbon 43:1722–1730CrossRefGoogle Scholar
  9. 9.
    Barnard AS, Sternberg M (2007) J Mater Chem 17:4811–4819CrossRefGoogle Scholar
  10. 10.
    Schrand AM, Dai L, Schlager JJ, Hussain SM, O¯sawa E (2007) Diam Relat Mater 16:2118–2123CrossRefGoogle Scholar
  11. 11.
    Schrand AM, Huang H, Carlson C, Schlager JJ, O¯sawa E, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7CrossRefGoogle Scholar
  12. 12.
    Schrand AM, Johnson J, Dai L, Hussain SM, Schlager JJ, Zhu L, Hong Y, O¯sawa E (2008) In: Webster TJ (ed), Safety of nanoparticles: from manufacturing to clinical applications, Chapter 8. Springer, New York, pp 159–188Google Scholar
  13. 13.
    Doktycz SJ, Suslick KS (1990) Science 247:1067–1069CrossRefGoogle Scholar
  14. 14.
    Box GE, Hunter WG, Hunter JS (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, Hoboken, NJMATHGoogle Scholar
  15. 15.
    Takahashi M, O¯sawa E Unpublished results.Google Scholar
  16. 16.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krüger A, O¯sawa E (2007) Adv Mater 19:1201–1206CrossRefGoogle Scholar
  17. 17.
    Iakoubouvskii K, Mitsuishi K, Furuya K (2008) Nanotechnology 19:155705(5pp)Google Scholar
  18. 18.
    Barnard AS (2008) J Mater Chem 18:4038–4041CrossRefGoogle Scholar
  19. 19.
    Ōsawa E, Ho D, Huang H, Korobov MV, Rozhkova NN (2009) Diam Relat Mater Scholar
  20. 20.
    Korobov MV, Avramenko NV, Bogachev AG, Rozhkova NV, O¯sawa E (2007) J Phys Chem C 111:7330–7334CrossRefGoogle Scholar
  21. 21.
    Korobov MV, Efremova MM, Avramenko NV, Ivanova NI, Rozhkova NN, O¯sawa E (submitted) LangmuirGoogle Scholar
  22. 22.
    Huang H, Dai L, Wang DH, Tan L-S, O¯sawa E (2008) J Mater Chem 18:1347–1352CrossRefGoogle Scholar
  23. 23.
    Hu S, Sun J, Du X, Tian F, Jiang L (2008) Diam Relat Mater 17:142–146CrossRefGoogle Scholar
  24. 24.
    Banhart F, Ajayan PM (1996) Nature 382:433–435CrossRefGoogle Scholar
  25. 25.
    Huang JY (2007) Nano Lett 10.1021/nl0709975Google Scholar
  26. 26.
    Hawelek L, Brodka A, Dore JC, Honkimaki V, Tomita S, Burian A (2008) Diam Relat Mater 17:1186–1193CrossRefGoogle Scholar
  27. 27.
    Ji S, Jiang T, Xu K, Li S (1998) Appl Surf Sci 133:231–238CrossRefGoogle Scholar
  28. 28.
    Huang H, Pierstorff E, O¯sawa E, Ho D (2007) Nano Lett 7:3305–3314CrossRefGoogle Scholar
  29. 29.
    Lam R, Chen M, Pierstorff E, Huang H, O¯sawa E, Ho D (2008) ACS Nano 2: 10.1021/nn800465xGoogle Scholar
  30. 30.
    Chen M, Pierstorff ED, Lam R, Li S, Huang H, O¯sawa E, Ho D. (2009) ACS Nano 3:10.1021/nn90048mGoogle Scholar
  31. 31.
    Huang H, Pierstorff E, O¯sawa E, Ho D (2008) ACS Nano 2:203–212CrossRefGoogle Scholar
  32. 32.
    Williams OA, Douheret O, Daenen M, Haenen K, O¯sawa E, Takahashi M (2007) Chem Phys Lett 445:255–258CrossRefGoogle Scholar
  33. 33.
    Arnault JC, Saada S, Nesladek M, Williams OA, Haenen K, Bergonzo P, O¯sawa E (2008) Diam Relat Mater 17: doi:10.1016/j.diamond.2008.01.008Google Scholar
  34. 34.
    Williams OA, Nesladek M, Daenen M, Michaelson S, Ternyak O, Hoffman A, O¯sawa E, Haenen K, Jackman RB, Gruen DM (2008) Diam Relat Mater 17:1080–1088CrossRefGoogle Scholar
  35. 35.
    Mori S, Kanno A, Nanao H, Minami I, O¯sawa E (2008) In: Vul’ A, Baidakova M (eds) Proceedings of the 3rd International Symposium on Detonation Nanodiamonds: Technology, Properties and Applications, July 1–4, 2008, St. Petersburg, Russia, Ioffe Physico-Technical Institute, St. Petersburg, Russia, pp 21–28Google Scholar
  36. 36.
    Kato T, Omori H, Lin I, O¯sawa E (2009) Tribologists (In Japanese) 54:122–129Google Scholar
  37. 37.
    Mabuchi Y, Nakagawa A (Nissan Motors Co.) (2006) Japanese Open Patent No. 2006-241443Google Scholar
  38. 38.
    Ōsawa E, Mori S (2009) Mon Tribol (in Japanese) 258:39–43Google Scholar
  39. 39.
    Kano M et al (2005) Tribol Lett 18:245–251CrossRefGoogle Scholar
  40. 40.
    Schiotz J, Jacobsen KW (2003) Science 301:1357–1359CrossRefGoogle Scholar
  41. 41.
    Wang DH, Tan L-S, Huang H, Dai L, O¯sawa E (2009) Macromolecules 42:114–124CrossRefGoogle Scholar
  42. 42.
    Burkat A, Dolmatov VV, O¯sawa E (in preparation)Google Scholar
  43. 43.
    Yang N, Uetsuka H, O¯sawa E, Nebel CE (2008) Angew Chem Int Ed 47:5183–5185CrossRefGoogle Scholar
  44. 44.
    Yang N, Uetsuka H, O¯sawa E, Nebel CE (2008) Nano Lett 10.1021/nl801136hGoogle Scholar
  45. 45.
    Makino K, Tejima S, Minami I, Nakamura H, O¯sawa E (2009) RIST News (in Japanese) 46:28–37Google Scholar
  46. 46.
    Ōsawa E (2002) Petrotech (in Japanese) 25:746–752Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eiji Ōsawa
    • 1
  1. 1.NanoCarbon Research Institute, AREC, Shinshu UniversityUedaJapan

Personalised recommendations