Advertisement

Intracrine Function from Angiotensin to Stem Cells

  • Richard N. Re
  • Julia L. Cook
Conference paper

Abstract

Intracrine action is increasingly being appreciated as a physiologically relevant signaling mechanism. Growing out of the study of angiotensin biology, intracrine physiology is becoming better understood and general principles of intracrine action have been proposed. Here the field will be briefly reviewed and some predictions of intracrine theory discussed to illustrate these principles of intracrine action. The potential relevance of these ideas to the working of the local renin–angiotensin systems and to diverse other biological processes such as differentiation and neoplasia is discussed.

Keywords

Vascular Endothelial Growth Factor Angiotensin System EGFR Ligand Induce Stem Cell Surface Nucleolin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Re R, Bryan SE. Functional intracellular renin-angiotensin systems may exist in multiple tissues. Clin Exp Hypertens A. 1984;6(10–11):1739–1742.PubMedCrossRefGoogle Scholar
  2. 2.
    Re RN. The cellular biology of angiotensin: paracrine, autocrine and intracrine actions in cardiovascular tissues. J Mol Cell Cardiol. 1989;2(Suppl 5):63–69.Google Scholar
  3. 3.
    Re R. The nature of intracrine peptide hormone action. Hypertension. 1999;34(4 Pt 1):534–548.PubMedGoogle Scholar
  4. 4.
    Re RN, Cook JL. An intracrine view of angiogenesis. Bioessays. 2006;28:943–953.PubMedCrossRefGoogle Scholar
  5. 5.
    Re RN, Cook JL. Potential therapeutic implications of intracrine angiogenesis. Med Hypotheses. 2007;69:414–421.PubMedCrossRefGoogle Scholar
  6. 6.
    Re RN, Cook JL. The physiological basis of intracrine stem cell regulation. Am J Physiol Heart Circ Physiol. 2008;295:H447–H453.PubMedCrossRefGoogle Scholar
  7. 7.
    Re RN. The intracrine hypothesis and intracellular peptide hormone action. Bioessays. 2003;25:401–409.PubMedCrossRefGoogle Scholar
  8. 8.
    Re RN, Cook JL. Mechanisms of disease: intracrine physiology in the cardiovascular system. Nat Clin Pract Cardiovasc Med. 2007;4:549–557.PubMedCrossRefGoogle Scholar
  9. 9.
    Cook JL, Zhang Z, Re R. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–1146.PubMedCrossRefGoogle Scholar
  10. 10.
    Cook JL, Mills SJ, Naquin R, Alam J, Re RN. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol. 2006;40:696–707.PubMedCrossRefGoogle Scholar
  11. 11.
    Cook JL, Giardina JF, Zhang Z, Re RN. Intracellular angiotensin II increases the long isoform of PDGF mRNA in rat hepatoma cells. J Mol Cell Cardiol. 2002;34(11):1525–1537.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar R, Singh VP, Baker KM. The intracellular renin–angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008;17:168–173.PubMedCrossRefGoogle Scholar
  13. 13.
    Singh VP, Baker KM, Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol. 2008;294:H1675–H1684.PubMedCrossRefGoogle Scholar
  14. 14.
    Singh VP, Le B, Bhat VB, Baker KM, Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007;293:H939–H948.PubMedCrossRefGoogle Scholar
  15. 15.
    Cook JL, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol. 2004;36:75–90.PubMedCrossRefGoogle Scholar
  16. 16.
    De Mello WC, Gerena Y. Eplerenone inhibits the intracrine and extracellular actions of angiotensin II on the inward calcium current in the failing heart. On the presence of an intracrine renin angiotensin aldosterone system. Regul Pept Jun 8 2008; [Epub ahead of print].Google Scholar
  17. 17.
    De Mello WC. Influence of intracellular renin on heart cell communication. Hypertension. 1995;25:1172–1177.PubMedGoogle Scholar
  18. 18.
    De Mello WC. Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension. 1998;32:976–982.Google Scholar
  19. 19.
    De Mello WC. Cardiac arrhythmias: the possible role of the renin-angiotensin system. J Mol Med. 2001;79:103–108.CrossRefGoogle Scholar
  20. 20.
    Eto K, Ohya Y, Nakamura Y, Abe I, Iida M. Intracellular angiotensin II stimulates voltage-operated Ca(2+) channels in arterial myocytes. Hypertension. 2002;39(2 Pt 2):474–478.PubMedCrossRefGoogle Scholar
  21. 21.
    Haller H, Lindschau C, Quass P, Luft FC. Intracellular actions of angiotensin II in vascular smooth muscle cells. J Am Soc Nephrol. 1999;10(Suppl 11):S75–S83.PubMedGoogle Scholar
  22. 22.
    Re RN, MacPhee AA, Fallon JT. Specific nuclear binding of angiotensin II by rat liver and spleen nuclei. Clin Sci (Lond). 1981;61(Suppl 7):245s–247s.Google Scholar
  23. 23.
    Re RN. Changes in nuclear initiation sites after the treatment of isolated nuclei with angiotensin II. Clin Sci. 1982;63:191s–193s.Google Scholar
  24. 24.
    Re RN, LaBiche RA, Bryan SE. Nuclear-hormone mediated changes in chromatin solubility. Biochem Biophys Res Commun. 1983;110:61–68.PubMedCrossRefGoogle Scholar
  25. 25.
    Re R, Parab M. Effect of angiotensin II on RNA synthesis by isolated nuclei. Life Sci. 1984;34:647–651.PubMedCrossRefGoogle Scholar
  26. 26.
    Fiaschi-Taesch NM, Stewart AF. Minireview: parathyroid hormone-related protein as an intracrine factor – trafficking mechanisms and functional consequences. Endocrinology. 2003;144:407–411.PubMedCrossRefGoogle Scholar
  27. 27.
    Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S. Dynorphin gene expression and release in the myocardial cell. J Biol Chem. 1994;269:5384–5386.PubMedGoogle Scholar
  28. 28.
    Ventura C, Maioli M, Pintus G, Posadino AM, Tadolini B. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J Biol Chem. 1998;273:13383–13386.PubMedCrossRefGoogle Scholar
  29. 29.
    Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res. 2003;92:617–622.PubMedCrossRefGoogle Scholar
  30. 30.
    Ventura C, Zinellu E, Maninchedda E, Maioli M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res. 2003;92:623–629.PubMedCrossRefGoogle Scholar
  31. 31.
    Li W, Keller G. VEGF nuclear accumulation correlates with phenotypical changes in endothelial cells. J Cell Sci. 2000;113(Pt 9):1525–1534.PubMedGoogle Scholar
  32. 32.
    Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007;449:473–477.PubMedCrossRefGoogle Scholar
  33. 33.
    Re RN. On the biological actions of intracellular angiotensin. Hypertension. 2000;35:1189–1190.PubMedGoogle Scholar
  34. 34.
    Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417:954–958.PubMedCrossRefGoogle Scholar
  35. 35.
    Gerber HP, Ferrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med. 2003;81:20–31.PubMedGoogle Scholar
  36. 36.
    Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 2005;24:445–456.PubMedCrossRefGoogle Scholar
  37. 37.
    Prochiantz A, Joliot A. Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol. 2003;4:814–819.PubMedGoogle Scholar
  38. 38.
    Lesaffre B, Joliot A, Prochiantz A, Volovitch M. Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Develop. 2007;2:2.CrossRefGoogle Scholar
  39. 39.
    Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes. 2003;52:1732–1737.PubMedCrossRefGoogle Scholar
  40. 40.
    Re RN. Toward a theory of intracrine hormone action. Regul Pept. 2002;106:1–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Ritter CA, Perez-Torres M, Rinehart C, et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res. 2007;13:4909–4919.PubMedCrossRefGoogle Scholar
  42. 42.
    Ferrer-Soler L, Vazquez-Martin A, Brunet J, Menendez JA, De Llorens R, Colomer R. An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: gefitinib (Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (review). Int J Mol Med. 2007;20:3–10.PubMedGoogle Scholar
  43. 43.
    Re RN. The origins of intracrine hormone action. Am J Med Sci. 2002;323:43–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Shi H, Huang Y, Zhou H, et al. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood. 2007;110:2899–2906.PubMedCrossRefGoogle Scholar
  45. 45.
    Destouches D, El Khoury D, Hamma-Kourbali Y, et al. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE. 2008;3:e2518.PubMedCrossRefGoogle Scholar
  46. 46.
    Teng Y, Girvan AC, Casson LK, et al. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res. 2007;67:10491–10500.PubMedCrossRefGoogle Scholar
  47. 47.
    Re RN. Intracellular renin and the nature of intracrine enzymes. Hypertension. 2003;42: 117–122.PubMedCrossRefGoogle Scholar
  48. 48.
    Robertson AL, Jr, Khairallah PA. Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle. Science. 1971;172:1138–1139.PubMedCrossRefGoogle Scholar
  49. 49.
    De Mello WC. Intracellular and extracellular renin have opposite effects on the regulation of heart cell volume. Implications for myocardial ischaemia. J Renin Angiotensin Aldosterone Syst. 2008;9:112–118.CrossRefGoogle Scholar
  50. 50.
    Messerli FH, Re RN. Do we need yet another blocker of the renin-angiotensin system? J Am Coll Cardiol. 2007;49:1164–1165.PubMedCrossRefGoogle Scholar
  51. 51.
    Kurtz TW. Treating the metabolic syndrome: telmisartan as a peroxisome proliferator-activated receptor-gamma activator. Acta Diabetol. 2005;42(Suppl1):S9–S16.PubMedCrossRefGoogle Scholar
  52. 52.
    Cook JL, Mills SJ, Naquin RT, Alam J, Re RN. Cleavage of the angiotensin II type 1 receptor and nuclear accumulation of the cytoplasmic carboxy-terminal fragment. Am J Physiol Cell Physiol. 2007;292:C1313–C1322.PubMedCrossRefGoogle Scholar
  53. 53.
    Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J. The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res. 2008;102:1539–1547.PubMedCrossRefGoogle Scholar
  54. 54.
    Re RN. Implications of intracrine hormone action for physiology and medicine. Am J Physiol Heart Circ Physiol. 2003;284:H751–H757.PubMedGoogle Scholar
  55. 55.
    Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear localization of angiotensinogen in astrocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R539–R546.PubMedGoogle Scholar
  56. 56.
    Camargo de Andrade MC, Di Marco GS, de Paulo Castro Teixeira V, et al. Expression and localization of N-domain ANG I-converting enzymes in mesangial cells in culture from spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2006;290:F364–375. Erratum in: Am J Physiol Renal Physiol. 2006;291:F921.PubMedCrossRefGoogle Scholar
  57. 57.
    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–1427.PubMedGoogle Scholar
  58. 58.
    Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int. 1996;50:1897–1903.PubMedCrossRefGoogle Scholar
  59. 59.
    Saris JJ, van den Eijnden MM, Lamers JM, Saxena PR, Schalekamp MA, Danser AH. Prorenin-induced myocyte proliferation: no role for intracellular angiotensin II. Hypertension. 2002;39(2 Pt 2):573–577.PubMedCrossRefGoogle Scholar
  60. 60.
    Peters J, Farrenkopf R, Clausmeyer S, et al. Functional significance of prorenin internalization in the rat heart. Circ Res. 2002;90:1135–1141.PubMedCrossRefGoogle Scholar
  61. 61.
    Campbell DJ. Critical review of prorenin and (pro)renin receptor research. Hypertension. 2008;51:1259–1264.PubMedCrossRefGoogle Scholar
  62. 62.
    Re RN, Cook JL. The basis of an intracrine pharmacology. J Clin Pharmacol. 2008;48: 344–350.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Richard N. Re
    • 1
  • Julia L. Cook
    • 1
  1. 1.Ochsner Clinic FoundationNew OrleansUSA

Personalised recommendations