Novel Aspects of the Cardiac Renin–Angiotensin System

  • Vivek P. Singh
  • Kenneth M. Baker
  • Rajesh Kumar
Conference paper


Involvement of the renin–angiotensin system (RAS) in human pathophysiology has expanded to include several diseases beyond a traditional role in salt and water homeostasis. In diabetes, there is significant overactivity of the RAS, which is inhibited by treatment with RAS blockers, thus decreasing diabetic complications. Activation of the RAS in diabetes includes several unique aspects, such as elevation of circulating prorenin levels and angiotensin (Ang) II-independent effects, mediated through interaction of pro(renin), with the pro(renin) receptor. Ang II-independent RAS actions suggest that efficacy of angiotensin receptor blockers (ARBs) and ACE inhibitors would have limitations in the treatment of diabetic patients. Recent meta-analyses of clinical trials have suggested that currently used RAS blockers may not provide additional benefits in diabetics compared to non-diabetics. We recently reported another novel aspect of the RAS, the intracellular system, which is dramatically activated in hyperglycemic conditions. In cardiac myocytes and fibroblasts, we demonstrated the presence of RAS components and synthesis of Ang II intracellularly. Hyperglycemia selectively upregulated the intracellular system in cardiac myocytes, vascular smooth muscle cells (VSMC), and renal mesangial cells where Ang II synthesis was largely catalyzed by chymase, not ACE. We also demonstrated elevation of intracellular Ang II (iAng II) levels in diabetic rat hearts, which resulted in increased cardiac myocyte apoptosis, oxidative stress, and cardiac fibrosis, suggesting a significant role of iAng II in diabetic cardiomyopathy. Others and we have previously reported that iAng II elicits multiple biological effects, some of which are not blocked by ARBs. Using Chinese hamster ovary (CHO) cells that do not express AT1 receptor, we confirmed that the latter are not required for intracellular actions of Ang II. The AT1-independent effects of iAng II are likely mediated by novel interactions between Ang II and intracellular proteins. The mechanism of RAS activation and intracellular accumulation of components by cardiac myocytes in high glucose (HG) conditions is not known. There is a possibility that an increased influx of glucose into the hexosamine biosynthesis pathway (HBP) and resultant O-glycosylation of proteins/transcription factors is responsible for the activation of the RAS and intracellular synthesis of Ang II.


Cardiac Myocytes High Glucose Condition Cardiomyopathic Hamster Intracellular Synthesis Hexosamine Biosynthesis Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pieruzzi F, Abassi ZA, Keiser HR. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. 1995;92:3105–3112.PubMedGoogle Scholar
  2. 2.
    Lee YA, Liang CS, Lee MA, Lindpaintner K. Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: a comprehensive study of all its components in the dog. Proc Natl Acad Sci USA. 1996;93:11035–11040.PubMedCrossRefGoogle Scholar
  3. 3.
    Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999 85:643–650.PubMedGoogle Scholar
  4. 4.
    Bader M, Peters J, Baltatu O, et al. Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med. 2001; 79:76–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Danser AH, Saris JJ, Schuijt MP, van Kats JP. Is there a local renin-angiotensin system in the heart? Cardiovasc Res. 1999;44:252–265.PubMedCrossRefGoogle Scholar
  6. 6.
    Baker KM, Aceto JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990;259:H610–618.PubMedGoogle Scholar
  7. 7.
    Booz GW, Baker KM. The role of the renin-angiotensin system in the pathophysiology of cardiac remodeling. Blood Press Suppl. 1996;2:10–18.Google Scholar
  8. 8.
    Booz GW, Day JN, Baker KM. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol. 2002;34:1443–1453.PubMedCrossRefGoogle Scholar
  9. 9.
    Dostal DE, Hunt RA, Kule CE, et al. Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol. 1997;29:2893–2902.PubMedCrossRefGoogle Scholar
  10. 10.
    Capponi AM. Distribution and signal transduction of angiotensin II AT1 and AT2 receptors. Blood Press Suppl. 1996;2:41–46.Google Scholar
  11. 11.
    Schunkert H, Sadoshima J, Cornelius T, et al. Angiotensin II-induced growth protein synthesis by angiotensin II. Circ Res. 1995;76:489–497.PubMedGoogle Scholar
  12. 12.
    Dostal DE, Baker KM. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J Hypertens. 1992;5:276–280.PubMedGoogle Scholar
  13. 13.
    Thomas WG, Thekkumkara TJ, Baker KM. Cardiac effects of AII. AT1A receptor signaling, desensitization, and internalization. Adv Exp Med Biol. 1996;396:59–69.PubMedGoogle Scholar
  14. 14.
    Carey RM. Update on the role of the AT2 receptor. Curr Opin Nephrol Hypertens. 2005;14:67–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakajima M, Hutchinson HG, Fujinaga M, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA. 1995;92:10663–10667.PubMedCrossRefGoogle Scholar
  16. 16.
    Nouet S, Nahmias C. Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab. 2000;11:1–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Shenoy UV, Richards EM, Huang XC, Sumners C. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology. 1999;140:500–509.PubMedCrossRefGoogle Scholar
  18. 18.
    Booz GW, Conrad KM, Hess AL, et al. Angiotensin-II-binding sites on hepatocyte nuclei. Endocrinology. 1992;130:3641–3649.PubMedCrossRefGoogle Scholar
  19. 19.
    Eggena P, Zhu JH, Clegg K, Barrett JD. Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension. 1993;22:496–501.PubMedGoogle Scholar
  20. 20.
    Jimenez E, Vinson GP, Montiel M. Angiotensin II (AII)-binding sites in nuclei from rat liver: partial characterization of the mechanism of AII accumulation in nuclei. J Endocrinol. 1994;143:449–453.PubMedCrossRefGoogle Scholar
  21. 21.
    Re RN, Vizard DL, Brown J, Bryan SE. Angiotensin II receptors in chromatin fragments generated by micrococcal nuclease. Biochem Biophys Res Commun. 1984;119:220–227.PubMedCrossRefGoogle Scholar
  22. 22.
    Sugiura N, Hagiwara H, Hirose S. Molecular cloning of porcine soluble angiotensin-binding protein. J Biol Chem. 1992;267:18067–18072.PubMedGoogle Scholar
  23. 23.
    Tang SS, Rogg H, Schumacher R, Dzau VJ. Characterization of nuclear angiotensin-II-binding sites in rat liver and comparison with plasma membrane receptors. Endocrinology. 1992;131:374–380.PubMedCrossRefGoogle Scholar
  24. 24.
    Karamyan VT, Gembardt F, Rabey FM, et al. Characterization of the brain-specific non-AT(1), non-AT(2) angiotensin binding site in the mouse. Eur J Pharmacol. 2008;590:87–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA. 1988;85:339–343.PubMedCrossRefGoogle Scholar
  26. 26.
    Schorb W, Booz GW, Dostal DE, et al. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 1993;72:1245–1254.PubMedGoogle Scholar
  27. 27.
    Weber MA, Giles TD. Inhibiting the renin-angiotensin system to prevent cardiovascular diseases: do we need a more comprehensive strategy? Rev Cardiovasc Med. 2006;7:45–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Lijnen P, Petrov V. Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol. 1999;31:949–970.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52:11–34.PubMedGoogle Scholar
  30. 30.
    Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–984.PubMedCrossRefGoogle Scholar
  31. 31.
    Mazzolai L, Nussberger J, Aubert JF, et al. Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. Hypertension. 1998;31:1324–1330.PubMedGoogle Scholar
  32. 32.
    Mazzolai L, Pedrazzini T, Nicoud F, et al. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension. 2000;35:985–991.PubMedGoogle Scholar
  33. 33.
    Booz GW, Carl LL, Baker KM. Amplification of angiotensin II signaling in cardiac myocytes by adenovirus-mediated overexpression of the AT1 receptor. Ann NY Acad Sci. 1999;874:20–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Crowley SD, Gurley SB, Herrera MJ, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103:17985–17990.PubMedCrossRefGoogle Scholar
  35. 35.
    Reudelhuber TL, Bernstein KE, Delafontaine P. Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look. Hypertension. 2007;49:1196–1201.PubMedCrossRefGoogle Scholar
  36. 36.
    Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system - Implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2007;17:168–173.Google Scholar
  37. 37.
    Singh VP, Le B, Bhat VB, et al. High glucose induced regulation of intracellular angiotensin ii synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007;293:H939–H948.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao HD, Fuchs S, Campbell DJ, et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 2004;165:1019–1032.PubMedCrossRefGoogle Scholar
  39. 39.
    van Kats JP, Methot D, Paradis P, et al. Use of a biological peptide pump to study chronic peptide hormone action in transgenic mice. Direct and indirect effects of angiotensin II on the heart. J Biol Chem. 2001;276:44012–44017.CrossRefGoogle Scholar
  40. 40.
    Baker KM, Chernin MI, Schreiber T, et al. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004;120:5–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Cook JL, Zhang Z, Re RN. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–1146.PubMedCrossRefGoogle Scholar
  42. 42.
    Re RN, Cook JL. The intracrine hypothesis: an update. Regul Pept. 2006;133:1–9.PubMedCrossRefGoogle Scholar
  43. 43.
    De Mello WC. Further studies on the effect of intracellular angiotensins on heart cell communication: on the role of endogenous angiotensin II. Regul Pept. 2003;115:31–36.CrossRefGoogle Scholar
  44. 44.
    Filipeanu CM, Henning RH, de Zeeuw D, Nelemans A. Intracellular angiotensin II and cell growth of vascular smooth muscle cells. Br J Pharmacol. 2001;132:1590–1596.PubMedCrossRefGoogle Scholar
  45. 45.
    Haller H, Lindschau C, Erdmann B, et al. Effects of intracellular angiotensin II in vascular smooth muscle cells. Circ Res. 1996;79:765–772.PubMedGoogle Scholar
  46. 46.
    Hein L, Meinel L, Pratt RE, et al. Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol. 1997;11:1266–1277.PubMedCrossRefGoogle Scholar
  47. 47.
    Erdmann B, Fuxe K, Ganten D. Subcellular localization of angiotensin II immunoreactivity in the rat cerebellar cortex. Hypertension. 1996;28:818–824.PubMedGoogle Scholar
  48. 48.
    Lee DK, Lanca AJ, Cheng R, et al. Agonist-independent nuclear localization of the apelin, angiotensin AT1 and bradykinin B2 receptors. J Biol Chem. 2003;279:7901–7908.PubMedCrossRefGoogle Scholar
  49. 49.
    Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear localization of angiotensinogen in astrocytes. Am J Physiol Regul Integr Comp Physiol. 2004;288:R539–546.PubMedGoogle Scholar
  50. 50.
    Pendergrass KD, Averill DB, Ferrario CM, et al. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol. 2006;290:F1497–1506.PubMedCrossRefGoogle Scholar
  51. 51.
    Fu ML, Schulze W, Wallukat G, et al. Immunohistochemical localization of angiotensin II receptors (AT1) in the heart with anti-peptide antibodies showing a positive chronotropic effect. Receptors Channels. 1998;6:99–111.PubMedGoogle Scholar
  52. 52.
    Re RN. Cellular biology of the renin-angiotensin systems. Arch Intern Med. 1984;144:2037–2041.PubMedCrossRefGoogle Scholar
  53. 53.
    De Mello WC. Influence of intracellular renin on heart cell communication. Hypertension. 1995;25:1172–1177.Google Scholar
  54. 54.
    Haller H, Lindschau C, Quass P, Luft FC. Intracellular actions of angiotensin II in vascular smooth muscle cells. J Am Soc Nephrol. 1999;10(Suppl 11):S75–83.PubMedGoogle Scholar
  55. 55.
    De Mello WC. Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension. 1998;32:976–982.Google Scholar
  56. 56.
    Baker KM, Kumar R. Intracellular angiotensin ii induces cell proliferation independent of AT1 receptor. Am J Physiol Cell Physiol. 2006;291:C995–1001.PubMedCrossRefGoogle Scholar
  57. 57.
    Cook JL, Giardina JF, Zhang Z, Re RN. Intracellular angiotensin II increases the long isoform of PDGF mRNA in rat hepatoma cells. J Mol Cell Cardiol. 2002;34:1525–1537.PubMedCrossRefGoogle Scholar
  58. 58.
    Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm. Trends Endocrinol Metab. 2007;18:208–214.PubMedCrossRefGoogle Scholar
  59. 59.
    Re RN. The intracellular renin angiotensin system: the tip of the intracrine physiology iceberg. Am J Physiol Heart Circ Physiol. 2007;293:H905–906.PubMedCrossRefGoogle Scholar
  60. 60.
    Re RN, Cook JL. Mechanisms of disease: intracrine physiology in the cardiovascular system. Nat Clin Pract Cardiovasc Med. 2007;4:549–557.PubMedCrossRefGoogle Scholar
  61. 61.
    Singh VP, Bao L, Khode R, et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008;57:3297–3306.Google Scholar
  62. 62.
    Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II- dependent. Lab Invest. 2000;80:513–527.PubMedGoogle Scholar
  63. 63.
    Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–1132.PubMedGoogle Scholar
  64. 64.
    Ingert C, Grima M, Coquard C, et al. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. Am J Physiol Renal Physiol. 2002;283:F1003–1010.PubMedGoogle Scholar
  65. 65.
    Dostal DE, Booz GW, Baker KM. Regulation of angiotensinogen gene expression and protein in neonatal rat cardiac fibroblasts by glucocorticoid and beta-adrenergic stimulation. Basic Res Cardiol. 2000;95:485–490.PubMedCrossRefGoogle Scholar
  66. 66.
    Peters J, Clausmeyer S. Intracellular sorting of renin: cell type specific differences and their consequences. J Mol Cell Cardiol. 2002;34:1561–1568.PubMedCrossRefGoogle Scholar
  67. 67.
    van Kesteren CA, Danser AH, Derkx FH, et al. Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. Hypertension. 1997;30:1389–1396.Google Scholar
  68. 68.
    Saris JJ, Derkx FH, Lamers JM, et al. Cardiomyocytes bind and activate native human prorenin: role of soluble mannose 6-phosphate receptors. Hypertension. 2001;37:710–715.PubMedGoogle Scholar
  69. 69.
    Clausmeyer S, Reinecke A, Farrenkopf R, et al. Tissue-specific expression of a rat renin transcript lacking the coding sequence for the prefragment and its stimulation by myocardial infarction. Endocrinology. 2000;141:2963–2970.PubMedCrossRefGoogle Scholar
  70. 70.
    Vidotti DB, Casarini DE, Cristovam PC, et al. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol. 2004;286:F1039–1045.PubMedCrossRefGoogle Scholar
  71. 71.
    Li P, Chen PM, Wang SW, Chen LY. Time-dependent expression of chymase and angiotensin converting enzyme in the hamster heart under pressure overload. Hypertens Res. 2002;25:757–762.PubMedCrossRefGoogle Scholar
  72. 72.
    Urata H, Nishimura H, Ganten D. Chymase-dependent angiotensin II forming systems in humans. Am J Hypertens. 1996;9:277–284.PubMedCrossRefGoogle Scholar
  73. 73.
    Dostal DE, Rothblum KN, Conrad KM, et al. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol. 1992;263:C851–863.PubMedGoogle Scholar
  74. 74.
    Camargo de Andrade MC, Di Marco GS, de Paulo Castro Teixeira V, et al. Expression and localization of N-domain ANG I-converting enzymes in mesangial cells in culture from spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2006;290:F364–375.PubMedCrossRefGoogle Scholar
  75. 75.
    Koka V, Wang W, Huang XR, et al. Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in diabetic complications. Circulation. 2006;113:1353–1360.PubMedCrossRefGoogle Scholar
  76. 76.
    Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol. 2003;14:1738–1747.PubMedCrossRefGoogle Scholar
  77. 77.
    Chai W, Danser AH. Is angiotensin II made inside or outside of the cell? Curr Hypertens Rep. 2005;7:124–127.PubMedCrossRefGoogle Scholar
  78. 78.
    Peters J, Farrenkopf R, Clausmeyer S, et al. Functional significance of prorenin internalization in the rat heart. Circ Res. 2002;90:1135–1141.PubMedCrossRefGoogle Scholar
  79. 79.
    Lavrentyev EN, Estes AM, Malik KU. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ Res. 2007;101:455–464.PubMedCrossRefGoogle Scholar
  80. 80.
    Singh R, Leehey DJ. Effect of ACE inhibitors on angiotensin II in rat mesangial cells cultured in high glucose. Biochem Biophys Res Commun. 2007;357:1040–1045.PubMedCrossRefGoogle Scholar
  81. 81.
    Itoh S, Ding B, Shishido T, et al. Role of p90 ribosomal S6 kinase-mediated prorenin- converting enzyme in ischemic and diabetic myocardium. Circulation. 2006;113: 1787–1798.PubMedCrossRefGoogle Scholar
  82. 82.
    Schefe JH, Menk M, Reinemund J, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99:1355–1366.PubMedCrossRefGoogle Scholar
  83. 83.
    Cesario DA, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am. 2006;35:601–610, ix–x.CrossRefGoogle Scholar
  84. 84.
    Toto RD. Heart disease in diabetic patients. Semin Nephrol. 2005;25:372–378.PubMedCrossRefGoogle Scholar
  85. 85.
    Price DA, Porter LE, Gordon M, et al. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol. 1999;10:2382–2391.PubMedGoogle Scholar
  86. 86.
    Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes. 2001;50:2363–2375.PubMedCrossRefGoogle Scholar
  87. 87.
    Hsieh TJ, Fustier P, Zhang SL, et al. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology. 2003;144:4338–4349.PubMedCrossRefGoogle Scholar
  88. 88.
    Hsieh TJ, Zhang SL, Filep JG, et al. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology. 2002;143:2975–2985.PubMedCrossRefGoogle Scholar
  89. 89.
    Singh R, Singh AK, Alavi N, Leehey DJ. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol. 2003;14:873–880.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh VP, Baker KM, Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol. 2008;294:H1675–1684.PubMedCrossRefGoogle Scholar
  91. 91.
    Hu Y, Belke D, Suarez J, et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res. 2005;96:1006–1013.PubMedCrossRefGoogle Scholar
  92. 92.
    Nagy T, Champattanachai V, Marchase RB, Chatham JC. Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol. 2006;290:C57–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Modesti A, Bertolozzi I, Gamberi T, et al. Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes. 2005;54:394–401.PubMedCrossRefGoogle Scholar
  94. 94.
    Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006;98:596–605.PubMedCrossRefGoogle Scholar
  95. 95.
    Fulop N, Marchase RB, Chatham JC. Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res. 2007;73:288–297.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu J, Pang Y, Chang T, et al. Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol. 2006;40:303–312.PubMedCrossRefGoogle Scholar
  97. 97.
    Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290:E1–E8.PubMedCrossRefGoogle Scholar
  98. 98.
    Veerababu G, Tang J, Hoffman RT, et al. Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes. 2000;49:2070–2078.PubMedCrossRefGoogle Scholar
  99. 99.
    Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J Biol Chem. 1996;271:15237–15243.PubMedCrossRefGoogle Scholar
  100. 100.
    Daniels MC, McClain DA, Crook ED. Transcriptional regulation of transforming growth factor beta1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am J Med Sci. 2000;319:138–142.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang J, Liu R, Hawkins M, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature. 1998;393:684–688.PubMedCrossRefGoogle Scholar
  102. 102.
    Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 2000;97:12222–12226.PubMedCrossRefGoogle Scholar
  103. 103.
    Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA. 2002;99:5313–5318.PubMedCrossRefGoogle Scholar
  104. 104.
    Slawson C, Housley MP, Hart GW. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem. 2006;97:71–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 2003;278:44230–44237.PubMedCrossRefGoogle Scholar
  106. 106.
    Rohrwasser A, Zhang S, Dillon HF, et al. Contribution of Sp1 to initiation of transcription of angiotensinogen. J Hum Genet. 2002;47:249–256.PubMedCrossRefGoogle Scholar
  107. 107.
    Pan L, Glenn ST, Jones CA, et al. Regulation of renin enhancer activity by nuclear factor I and Sp1/Sp3. Biochim Biophys Acta. 2003;1625:280–290.PubMedGoogle Scholar
  108. 108.
    Jamaluddin M, Meng T, Sun J, et al. Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation. Mol Endocrinol. 2000;14:99–113.PubMedCrossRefGoogle Scholar
  109. 109.
    Todorov VT, Volkl S, Friedrich J, et al. Role of CREB1 and NF{kappa}B-p65 in the down-regulation of renin gene expression by tumor necrosis factor {alpha}. J Biol Chem. 2005;280:24356–24362.PubMedCrossRefGoogle Scholar
  110. 110.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625.PubMedCrossRefGoogle Scholar
  111. 111.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820.PubMedCrossRefGoogle Scholar
  112. 112.
    Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–508.PubMedGoogle Scholar
  113. 113.
    Brasier AR, Jamaluddin M, Han Y, et al. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem. 2000;212:155–169.PubMedCrossRefGoogle Scholar
  114. 114.
    Filipeanu CM, Henning RH, Nelemans SA, de Zeeuw D. Intracellular angiotensin II: from myth to reality? J Renin Angiotensin Aldosterone Syst. 2001;2:219–226.PubMedCrossRefGoogle Scholar
  115. 115.
    Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109:2054–2057.PubMedCrossRefGoogle Scholar
  116. 116.
    de Gasparo M, Catt KJ, Inagami T, et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–472.Google Scholar
  117. 117.
    Robertson AL, Jr, Khairallah PA. Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle. Science. 1971;172:1138–1139.PubMedCrossRefGoogle Scholar
  118. 118.
    Pendergrass KD, Averill DB, Ferrario CM, et al. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol. 2006;290:F1497–1506.PubMedCrossRefGoogle Scholar
  119. 119.
    Kiron MA, Soffer RL. Purification and properties of a soluble angiotensin II-binding protein from rabbit liver. J Biol Chem. 1989;264:4138–4142.PubMedGoogle Scholar
  120. 120.
    Kato A, Sugiura N, Hagiwara H, Hirose S. Cloning, amino acid sequence and tissue distribution of porcine thimet oligopeptidase. A comparison with soluble angiotensin-binding protein. Eur J Biochem. 1994;221:159–165.PubMedCrossRefGoogle Scholar
  121. 121.
    Albiston AL, McDowall SG, Matsacos D, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001;276:48623–48626.PubMedCrossRefGoogle Scholar
  122. 122.
    Conway RE, Petrovic N, Li Z, et al. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol. 2006;26:5310–5324.PubMedCrossRefGoogle Scholar
  123. 123.
    Fleming I. Signaling by the angiotensin-converting enzyme. Circ Res. 2006;98:887–896.PubMedCrossRefGoogle Scholar
  124. 124.
    Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454.PubMedCrossRefGoogle Scholar
  125. 125.
    Sheng Z, Liang Y, Lin CY, et al. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25:9419–9426.PubMedCrossRefGoogle Scholar
  126. 126.
    Lim HS, MacFadyen RJ, Lip GY. Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch Intern Med. 2004;164:1737–1748.PubMedCrossRefGoogle Scholar
  127. 127.
    Boccara F, Cohen A. Interplay of diabetes and coronary heart disease on cardiovascular mortality. Heart. 2004;90:1371–1373.PubMedCrossRefGoogle Scholar
  128. 128.
    Okin PM, Devereux RB, Gerdts E, et al. Impact of diabetes mellitus on regression of electrocardiographic left ventricular hypertrophy and the prediction of outcome during antihypertensive therapy: the Losartan intervention for endpoint (LIFE) reduction in hypertension study. Circulation. 2006;113:1588–1596.PubMedCrossRefGoogle Scholar
  129. 129.
    Turnbull F, Neal B, Algert C, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165:1410–1419.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vivek P. Singh
    • 1
  • Kenneth M. Baker
    • 2
  • Rajesh Kumar
    • 2
  1. 1.Department of Medicine, Division of Molecular CardiologyTexas A&M Health Science CenterTempleUSA
  2. 2.Department of Medicine, Division of Molecular CardiologyTexas A&M Health Science Center College of MedicineTempleUSA

Personalised recommendations